本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{e^{2}}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{e^{2}}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(e^{2}*0)log_{e^{2}}^{x}}{(e^{2})})}{(ln(e^{2}))})\\=&\frac{1}{xln(e^{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{xln(e^{2})}\right)}{dx}\\=&\frac{-1}{x^{2}ln(e^{2})} + \frac{-e^{2}*0}{xln^{2}(e^{2})(e^{2})}\\=&\frac{-1}{x^{2}ln(e^{2})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-1}{x^{2}ln(e^{2})}\right)}{dx}\\=&\frac{--2}{x^{3}ln(e^{2})} - \frac{-e^{2}*0}{x^{2}ln^{2}(e^{2})(e^{2})}\\=&\frac{2}{x^{3}ln(e^{2})}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{2}{x^{3}ln(e^{2})}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(e^{2})} + \frac{2*-e^{2}*0}{x^{3}ln^{2}(e^{2})(e^{2})}\\=&\frac{-6}{x^{4}ln(e^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!