本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x - 3)}{(xx + 2x - 3)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(x^{2} + 2x - 3)} - \frac{3}{(x^{2} + 2x - 3)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(x^{2} + 2x - 3)} - \frac{3}{(x^{2} + 2x - 3)}\right)}{dx}\\=&(\frac{-(2x + 2 + 0)}{(x^{2} + 2x - 3)^{2}})x + \frac{1}{(x^{2} + 2x - 3)} - 3(\frac{-(2x + 2 + 0)}{(x^{2} + 2x - 3)^{2}})\\=&\frac{-2x^{2}}{(x^{2} + 2x - 3)^{2}} + \frac{4x}{(x^{2} + 2x - 3)^{2}} + \frac{1}{(x^{2} + 2x - 3)} + \frac{6}{(x^{2} + 2x - 3)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2x^{2}}{(x^{2} + 2x - 3)^{2}} + \frac{4x}{(x^{2} + 2x - 3)^{2}} + \frac{1}{(x^{2} + 2x - 3)} + \frac{6}{(x^{2} + 2x - 3)^{2}}\right)}{dx}\\=&-2(\frac{-2(2x + 2 + 0)}{(x^{2} + 2x - 3)^{3}})x^{2} - \frac{2*2x}{(x^{2} + 2x - 3)^{2}} + 4(\frac{-2(2x + 2 + 0)}{(x^{2} + 2x - 3)^{3}})x + \frac{4}{(x^{2} + 2x - 3)^{2}} + (\frac{-(2x + 2 + 0)}{(x^{2} + 2x - 3)^{2}}) + 6(\frac{-2(2x + 2 + 0)}{(x^{2} + 2x - 3)^{3}})\\=&\frac{8x^{3}}{(x^{2} + 2x - 3)^{3}} - \frac{8x^{2}}{(x^{2} + 2x - 3)^{3}} - \frac{6x}{(x^{2} + 2x - 3)^{2}} - \frac{40x}{(x^{2} + 2x - 3)^{3}} + \frac{2}{(x^{2} + 2x - 3)^{2}} - \frac{24}{(x^{2} + 2x - 3)^{3}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{8x^{3}}{(x^{2} + 2x - 3)^{3}} - \frac{8x^{2}}{(x^{2} + 2x - 3)^{3}} - \frac{6x}{(x^{2} + 2x - 3)^{2}} - \frac{40x}{(x^{2} + 2x - 3)^{3}} + \frac{2}{(x^{2} + 2x - 3)^{2}} - \frac{24}{(x^{2} + 2x - 3)^{3}}\right)}{dx}\\=&8(\frac{-3(2x + 2 + 0)}{(x^{2} + 2x - 3)^{4}})x^{3} + \frac{8*3x^{2}}{(x^{2} + 2x - 3)^{3}} - 8(\frac{-3(2x + 2 + 0)}{(x^{2} + 2x - 3)^{4}})x^{2} - \frac{8*2x}{(x^{2} + 2x - 3)^{3}} - 6(\frac{-2(2x + 2 + 0)}{(x^{2} + 2x - 3)^{3}})x - \frac{6}{(x^{2} + 2x - 3)^{2}} - 40(\frac{-3(2x + 2 + 0)}{(x^{2} + 2x - 3)^{4}})x - \frac{40}{(x^{2} + 2x - 3)^{3}} + 2(\frac{-2(2x + 2 + 0)}{(x^{2} + 2x - 3)^{3}}) - 24(\frac{-3(2x + 2 + 0)}{(x^{2} + 2x - 3)^{4}})\\=&\frac{-48x^{4}}{(x^{2} + 2x - 3)^{4}} + \frac{48x^{2}}{(x^{2} + 2x - 3)^{3}} + \frac{288x^{2}}{(x^{2} + 2x - 3)^{4}} + \frac{384x}{(x^{2} + 2x - 3)^{4}} - \frac{48}{(x^{2} + 2x - 3)^{3}} - \frac{6}{(x^{2} + 2x - 3)^{2}} + \frac{144}{(x^{2} + 2x - 3)^{4}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-48x^{4}}{(x^{2} + 2x - 3)^{4}} + \frac{48x^{2}}{(x^{2} + 2x - 3)^{3}} + \frac{288x^{2}}{(x^{2} + 2x - 3)^{4}} + \frac{384x}{(x^{2} + 2x - 3)^{4}} - \frac{48}{(x^{2} + 2x - 3)^{3}} - \frac{6}{(x^{2} + 2x - 3)^{2}} + \frac{144}{(x^{2} + 2x - 3)^{4}}\right)}{dx}\\=&-48(\frac{-4(2x + 2 + 0)}{(x^{2} + 2x - 3)^{5}})x^{4} - \frac{48*4x^{3}}{(x^{2} + 2x - 3)^{4}} + 48(\frac{-3(2x + 2 + 0)}{(x^{2} + 2x - 3)^{4}})x^{2} + \frac{48*2x}{(x^{2} + 2x - 3)^{3}} + 288(\frac{-4(2x + 2 + 0)}{(x^{2} + 2x - 3)^{5}})x^{2} + \frac{288*2x}{(x^{2} + 2x - 3)^{4}} + 384(\frac{-4(2x + 2 + 0)}{(x^{2} + 2x - 3)^{5}})x + \frac{384}{(x^{2} + 2x - 3)^{4}} - 48(\frac{-3(2x + 2 + 0)}{(x^{2} + 2x - 3)^{4}}) - 6(\frac{-2(2x + 2 + 0)}{(x^{2} + 2x - 3)^{3}}) + 144(\frac{-4(2x + 2 + 0)}{(x^{2} + 2x - 3)^{5}})\\=&\frac{384x^{5}}{(x^{2} + 2x - 3)^{5}} - \frac{2304x^{3}}{(x^{2} + 2x - 3)^{5}} - \frac{480x^{3}}{(x^{2} + 2x - 3)^{4}} - \frac{288x^{2}}{(x^{2} + 2x - 3)^{4}} + \frac{120x}{(x^{2} + 2x - 3)^{3}} - \frac{5376x^{2}}{(x^{2} + 2x - 3)^{5}} + \frac{864x}{(x^{2} + 2x - 3)^{4}} + \frac{384x^{4}}{(x^{2} + 2x - 3)^{5}} - \frac{4224x}{(x^{2} + 2x - 3)^{5}} + \frac{672}{(x^{2} + 2x - 3)^{4}} - \frac{1152}{(x^{2} + 2x - 3)^{5}} + \frac{24}{(x^{2} + 2x - 3)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!