数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数e^{e^{e^{th(x)}}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{e^{e^{th(x)}}}\right)}{dx}\\=&e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))\\=& - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{2}(x) + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{2}(x) + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}\right)}{dx}\\=& - e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{th(x)}th^{2}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}th^{2}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}*2th(x)(1 - th^{2}(x)) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))\\=& - e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) + e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{2}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{4}(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) - e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}} + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) + e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{2}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{4}(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) - e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}} + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}\right)}{dx}\\=& - e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{e^{th(x)}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) + 2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 2*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) - 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th^{2}(x) - 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*2th(x)(1 - th^{2}(x)) + 2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) + e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}*2th(x)(1 - th^{2}(x)) + e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{th(x)}th^{4}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}th^{4}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}*4th^{3}(x)(1 - th^{2}(x)) - 2e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{th(x)}th(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}th(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))th(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x)) + 2e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{3}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*3th^{2}(x)(1 - th^{2}(x)) - 2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) - e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) - e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{2}(x) - e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}*2th(x)(1 - th^{2}(x)) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + 2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}} + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}} + e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))\\=& - 2e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) + 2e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 3e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 4e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{2}(x) + 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{3}(x) + 5e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{6}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{5}(x) - 5e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) + 7e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{2}(x) + 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 4e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th^{2}(x) + 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 8e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{3}(x) + 10e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{3}(x) + 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) - 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) + e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{4}(x) - e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - 6e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{5}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{5}(x) - 3e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{2}(x) + 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{4}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{2}(x) - 4e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th(x) - 5e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{4}(x) + 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) - 4e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th(x) - 6e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) + 8e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - 2e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{3}(x) - 2e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) - 2e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th(x) + 2e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{3}(x) - e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}th^{3}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th(x) - e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{2}(x) + e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) - e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) + 3e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}} + e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}} + 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - 2e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) + 2e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 3e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 4e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{2}(x) + 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{3}(x) + 5e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{6}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{5}(x) - 5e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) + 7e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{2}(x) + 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 4e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th^{2}(x) + 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 8e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{3}(x) + 10e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{3}(x) + 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) - 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) + e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{4}(x) - e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - 6e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{5}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{5}(x) - 3e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{2}(x) + 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{4}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{2}(x) - 4e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th(x) - 5e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{4}(x) + 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) - 4e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th(x) - 6e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) + 8e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - 2e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{3}(x) - 2e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) - 2e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th(x) + 2e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{3}(x) - e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}th^{3}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th(x) - e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{2}(x) + e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) - e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) + 3e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}} + e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}} + 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}\right)}{dx}\\=& - 2e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) - 2e^{e^{th(x)}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - 2e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 2e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) + 2*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{{th(x)}*{3}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 2e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 8*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) + 3e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) + 3e^{e^{th(x)}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + 3e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 3e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 4*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{2}(x) - 4e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}th^{2}(x) - 4e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 4e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}*2th(x)(1 - th^{2}(x)) + 2*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}th^{4}(x) + 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}*4th^{3}(x)(1 - th^{2}(x)) + 2e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) + 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{4}(x) + 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}*4th^{3}(x)(1 - th^{2}(x)) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{{th(x)}*{2}}th^{3}(x) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th^{3}(x) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}*3th^{2}(x)(1 - th^{2}(x)) + 5*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) + 5e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + 5e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 5e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 3*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{6}(x) - 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{6}(x) - 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*6th^{5}(x)(1 - th^{2}(x)) - e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{e^{th(x)}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{6}(x) - e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*6th^{5}(x)(1 - th^{2}(x)) - 2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{{e^{th(x)}}*{2}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{6}(x) - e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*6th^{5}(x)(1 - th^{2}(x)) - e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{th(x)}th^{6}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}th^{6}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}*6th^{5}(x)(1 - th^{2}(x)) - 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{th(x)}}th^{5}(x) - 4e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{5}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{5}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}*5th^{4}(x)(1 - th^{2}(x)) - 5*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) - 5e^{{e^{th(x)}}*{2}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - 5e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 5e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) + 7*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) + 7e^{{e^{th(x)}}*{2}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + 7e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 7e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 3*3e^{{e^{th(x)}}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{2}(x) - 3e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}th^{2}(x) - 3e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 3e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}*2th(x)(1 - th^{2}(x)) + 2*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{{th(x)}*{3}}*3e^{{e^{th(x)}}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th^{2}(x) - 4e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th^{2}(x) - 4e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 4e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}*2th(x)(1 - th^{2}(x)) + 4*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}th^{4}(x) + 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}*4th^{3}(x)(1 - th^{2}(x)) + 8e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{th(x)}th^{3}(x) + 8e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}th^{3}(x) + 8e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 8e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}*3th^{2}(x)(1 - th^{2}(x)) + 10*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{3}(x) + 10e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{3}(x) + 10e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 10e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*3th^{2}(x)(1 - th^{2}(x)) + 3*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) + 3e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) - 3*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) - 3e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{6}(x) - 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - 3e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*6th^{5}(x)(1 - th^{2}(x)) - 2*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) - 2e^{{th(x)}*{3}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{6}(x) - 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*6th^{5}(x)(1 - th^{2}(x)) + 3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{4}(x) + e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{3}}th^{4}(x) + e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*3e^{{e^{th(x)}}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}*4th^{3}(x)(1 - th^{2}(x)) - 3e^{{e^{th(x)}}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{{e^{th(x)}}*{3}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{6}(x) - e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{6}(x) - e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*6th^{5}(x)(1 - th^{2}(x)) - 6e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{5}(x) - 6e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{5}(x) - 6e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{5}(x) - 6e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*5th^{4}(x)(1 - th^{2}(x)) - 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{5}(x) - 4e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}th^{5}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{5}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}*5th^{4}(x)(1 - th^{2}(x)) - 3e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{2}(x) - 3e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}th^{2}(x) - 3e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 3e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}*2th(x)(1 - th^{2}(x)) + 2*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{4}(x) + 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th^{4}(x) + 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*4th^{3}(x)(1 - th^{2}(x)) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}*2th(x)(1 - th^{2}(x)) - 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}}th(x) - 4e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th(x) - 4e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th(x) - 4e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}(1 - th^{2}(x)) - 5e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}}th^{4}(x) - 5e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{4}(x) - 5e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) - 5e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}*4th^{3}(x)(1 - th^{2}(x)) + 8*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) + 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{3}(x) + 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 8e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*3th^{2}(x)(1 - th^{2}(x)) - 4e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th(x) - 4e^{e^{th(x)}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th(x) - 4e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th(x) - 4e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}(1 - th^{2}(x)) - 6*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th(x) - 6e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th(x) - 6e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th(x) - 6e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}(1 - th^{2}(x)) + 2e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{3}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*3th^{2}(x)(1 - th^{2}(x)) + 8e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 8e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) + 8e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) + 8e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) - 2e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) - 2e^{e^{th(x)}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{5}(x) - 2e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{5}(x) - 2e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*5th^{4}(x)(1 - th^{2}(x)) + 2*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{3}(x) + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}th^{3}(x) + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}*3th^{2}(x)(1 - th^{2}(x)) - 2*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) - 2e^{{e^{th(x)}}*{2}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{5}(x) - 2e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{5}(x) - 2e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*5th^{4}(x)(1 - th^{2}(x)) - 2*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th(x) - 2e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th(x) - 2e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th(x) - 2e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}(1 - th^{2}(x)) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{e^{th(x)}}th^{3}(x) + 2e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{3}(x) + 2e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}*3th^{2}(x)(1 - th^{2}(x)) - 3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{3}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) + e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) + e^{e^{th(x)}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{4}(x) + e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*4th^{3}(x)(1 - th^{2}(x)) + 2e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{e^{th(x)}}}th^{3}(x) + 2e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{3}(x) + 2e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}*3th^{2}(x)(1 - th^{2}(x)) - 2e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{2}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}*2th(x)(1 - th^{2}(x)) - 2e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{e^{th(x)}}th(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th(x) - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}(1 - th^{2}(x)) - 2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*2th(x)(1 - th^{2}(x)) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{{th(x)}*{2}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th^{2}(x) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}*2th(x)(1 - th^{2}(x)) + 2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) + e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}th^{4}(x) + e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}*4th^{3}(x)(1 - th^{2}(x)) - 2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) - e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}th^{2}(x) - e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*2th(x)(1 - th^{2}(x)) + 3*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + 3e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}} + 3e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}} + e^{e^{e^{th(x)}}}*3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{3}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}*3e^{{e^{th(x)}}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + 3e^{{th(x)}*{2}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}} + e^{{th(x)}*{3}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}} + e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + 2*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}} + 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{{e^{th(x)}}*{2}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}*2e^{e^{th(x)}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) + 3*2e^{th(x)}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}}e^{e^{e^{th(x)}}} + 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}} + 3e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x)) - 2e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{e^{e^{th(x)}}}e^{th(x)} - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)} - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x)) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))e^{th(x)}e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{th(x)}(1 - th^{2}(x))e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}e^{th(x)}(1 - th^{2}(x))\\=& - 3e^{e^{th(x)}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{2}(x) + 4e^{{th(x)}*{4}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 20e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 17e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 3e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{2}(x) + 5e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 3e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{6}(x) + 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{3}}th^{3}(x) + 17e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 15e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{6}(x) - 3e^{e^{th(x)}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{6}(x) - 22e^{{e^{th(x)}}*{2}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{6}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{8}(x) - 8e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{e^{th(x)}}th^{5}(x) + 10e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 30e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 37e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{2}(x) + 35e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) + 6e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{5}(x) + 16e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{3}(x) - 7e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) + 32e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) - 12e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{6}(x) + 12e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{7}(x) - 12e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{5}(x) - 7e^{{th(x)}*{4}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) + 9e^{{th(x)}*{4}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 8e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) + 8e^{e^{e^{th(x)}}}e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}th^{4}(x) + 5e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) + 70e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{3}(x) - 8e^{{th(x)}*{4}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) + 4e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 4e^{e^{e^{th(x)}}}e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}th^{6}(x) + 14e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{3}(x) - 26e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{5}(x) + 20e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 14e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) + 2e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{4}(x) - 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{6}(x) - 10e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{5}(x) - 8e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}th^{5}(x) + 4e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}th^{3}(x) - 4e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{5}(x) + 4e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{e^{th(x)}}th^{3}(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{5}(x) + 4e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{3}(x) - 58e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{5}(x) - 62e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{4}(x) - 2e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{4}(x) - 11e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{6}(x) - 8e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - 36e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - 24e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{5}(x) + 7e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{8}(x) + 6e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{8}(x) + 6e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{8}(x) + 26e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{7}(x) + e^{{th(x)}*{4}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{8}(x) - 2e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{6}(x) + e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{8}(x) + 6e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{3}}th^{7}(x) + 2e^{{e^{th(x)}}*{2}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{8}(x) - 16e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{6}(x) - 10e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{6}(x) + e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{8}(x) + 6e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}th^{7}(x) + 24e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{6}(x) + 7e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{8}(x) + 29e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{6}(x) + 22e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) - 8e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}th^{5}(x) + 4e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{7}(x) - 8e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{5}(x) - 6e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{5}(x) + 6e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{7}(x) - 44e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{4}(x) + 20e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{6}(x) - 11e^{{e^{th(x)}}*{2}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{2}(x) + 25e^{{e^{th(x)}}*{2}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{4}(x) - 15e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) - 8e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{2}(x) + 12e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{4}(x) - 22e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th(x) + 10e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}th^{3}(x) + 40e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 28e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}th^{5}(x) - 9e^{{e^{th(x)}}*{3}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{2}(x) + 15e^{{e^{th(x)}}*{3}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{4}(x) - 4e^{{e^{th(x)}}*{4}}e^{e^{e^{th(x)}}}e^{{th(x)}*{4}}th^{2}(x) + 4e^{{th(x)}*{4}}e^{{e^{th(x)}}*{4}}e^{e^{e^{th(x)}}}th^{4}(x) - 9e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}th^{2}(x) + 15e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{4}(x) - 12e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th(x) + 22e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{3}(x) + 11e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 15e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) + 2e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{4}}th^{4}(x) - 2e^{{e^{th(x)}}*{4}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{6}(x) - 12e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}th^{5}(x) - 10e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}th^{2}(x) + 9e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{4}(x) - 8e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{2}(x) - 9e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) - 20e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th(x) + 44e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{3}(x) + 10e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{4}(x) - 12e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{6}(x) - 8e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}th^{6}(x) - 18e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) + 30e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{3}(x) + 26e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{3}(x) - 58e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) - 28e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{3}(x) - 32e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th(x) + 30e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{2}(x) + 36e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{3}(x) - 32e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) + 14e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{3}(x) - 20e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{5}(x) + 34e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{2}(x) - 49e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{4}(x) - 3e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{6}(x) - 12e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{5}(x) + 12e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{8}(x) - 6e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{6}(x) + 6e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{8}(x) + 26e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{7}(x) + 4e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{8}(x) + 5e^{{e^{th(x)}}*{3}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{8}(x) + 12e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}th^{7}(x) - e^{{th(x)}*{4}}e^{{e^{th(x)}}*{4}}e^{e^{e^{th(x)}}}th^{6}(x) - 3e^{e^{e^{th(x)}}}e^{{th(x)}*{4}}e^{{e^{th(x)}}*{3}}th^{6}(x) - 3e^{{e^{th(x)}}*{3}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{6}(x) - e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{4}}th^{6}(x) + e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{4}}th^{8}(x) + 6e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}th^{7}(x) + 10e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{7}(x) - 20e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{5}(x) + 10e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{7}(x) + 4e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{7}(x) - 10e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{5}(x) + 10e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{7}(x) + 4e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{2}(x) - 10e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th(x) + 4e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th^{4}(x) - 3e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{2}(x) + e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{4}(x) - e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{2}(x) - 14e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th(x) - 6e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th(x) + 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{th(x)}th^{3}(x) + 20e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}th^{3}(x) + 46e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) - 8e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th(x) - 11e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}}th^{4}(x) - 16e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{5}(x) + 14e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 8e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{2}(x) + 10e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th^{6}(x) + 2e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{3}(x) + 16e^{th(x)}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th(x) - 6e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{5}(x) - 18e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) - 24e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}th^{4}(x) + 10e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th^{6}(x) + 8e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{e^{th(x)}}th^{2}(x) - 6e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{4}(x) - 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{5}(x) + 4e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th^{3}(x) - 4e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th(x) + 4e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{7}(x) - 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{5}(x) + 2e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{7}(x) + 6e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{3}(x) - 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{3}}th^{5}(x) - 6e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{th(x)}th^{4}(x) + 12e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{3}(x) + 8e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}th^{2}(x) + 6e^{e^{th(x)}}e^{th(x)}e^{e^{e^{th(x)}}}th^{3}(x) - e^{{th(x)}*{4}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{2}(x) + 2e^{e^{th(x)}}e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}th^{4}(x) + 2e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}th^{3}(x) - e^{{th(x)}*{4}}e^{e^{th(x)}}e^{e^{e^{th(x)}}}th^{6}(x) - 6e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th(x) - 4e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}th(x) - 3e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{2}(x) - 4e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{2}}th(x) - 2e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th(x) - 7e^{{e^{th(x)}}*{2}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) - e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}}th^{2}(x) + e^{{e^{th(x)}}*{3}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{4}(x) - 5e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}th^{2}(x) + e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{4}(x) - e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{e^{th(x)}}th^{2}(x) + e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{4}(x) - 2e^{e^{th(x)}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}th^{2}(x) + e^{e^{e^{th(x)}}}e^{e^{th(x)}}e^{{th(x)}*{3}}th^{4}(x) - e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{e^{th(x)}}th^{6}(x) - 2e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}th^{2}(x) - 2e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}}e^{{th(x)}*{2}}th^{2}(x) - 6e^{e^{e^{th(x)}}}e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}th^{2}(x) - 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) - 3e^{e^{th(x)}}e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}th^{2}(x) + 3e^{{th(x)}*{4}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}} - 8e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}}e^{{th(x)}*{2}} + 6e^{{th(x)}*{4}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{4}}e^{{e^{th(x)}}*{4}} + 3e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}} - 5e^{e^{e^{th(x)}}}e^{th(x)}e^{e^{th(x)}} + e^{{th(x)}*{4}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + 2e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}}e^{e^{e^{th(x)}}} + 4e^{{th(x)}*{3}}e^{{e^{th(x)}}*{2}}e^{e^{e^{th(x)}}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{3}}e^{{e^{th(x)}}*{3}} + e^{{th(x)}*{4}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} + 6e^{{th(x)}*{2}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + 14e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{2}} + 3e^{{th(x)}*{3}}e^{e^{e^{th(x)}}}e^{{e^{th(x)}}*{3}} + 6e^{{th(x)}*{3}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} + 5e^{{th(x)}*{2}}e^{e^{th(x)}}e^{e^{e^{th(x)}}} - 6e^{e^{th(x)}}e^{{th(x)}*{2}}e^{e^{e^{th(x)}}} - 2e^{th(x)}e^{e^{e^{th(x)}}}e^{e^{th(x)}} + e^{e^{e^{th(x)}}}e^{{th(x)}*{2}}e^{{e^{th(x)}}*{2}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。