本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{th(x)}^{23456789} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = th^{23456789}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( th^{23456789}(x)\right)}{dx}\\=&23456789th^{23456788}(x)(1 - th^{2}(x))\\=&23456789th^{23456788}(x) - 23456789th^{23456790}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 23456789th^{23456788}(x) - 23456789th^{23456790}(x)\right)}{dx}\\=&23456789*23456788th^{23456787}(x)(1 - th^{2}(x)) - 23456789*23456790th^{23456789}(x)(1 - th^{2}(x))\\=&550220926733732th^{23456787}(x) - 1100441900381042th^{23456789}(x) + 550220973647310th^{23456791}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 550220926733732th^{23456787}(x) - 1100441900381042th^{23456789}(x) + 550220973647310th^{23456791}(x)\right)}{dx}\\=&550220926733732*23456787th^{23456786}(x)(1 - th^{2}(x)) - 1100441900381042*23456789th^{23456788}(x)(1 - th^{2}(x)) + 550220973647310*23456791th^{23456790}(x)(1 - th^{2}(x))\\=&-6305770260928892116th^{23456786}(x) + 467265383469808762th^{23456788}(x) - 463964057768665636th^{23456790}(x) + 6302468935227748990th^{23456792}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -6305770260928892116th^{23456786}(x) + 467265383469808762th^{23456788}(x) - 463964057768665636th^{23456790}(x) + 6302468935227748990th^{23456792}(x)\right)}{dx}\\=&-6305770260928892116*23456786th^{23456785}(x)(1 - th^{2}(x)) + 467265383469808762*23456788th^{23456787}(x)(1 - th^{2}(x)) - 463964057768665636*23456790th^{23456789}(x)(1 - th^{2}(x)) + 6302468935227748990*23456792th^{23456791}(x)(1 - th^{2}(x))\\=&-7596301620547639016th^{23456785}(x) - 4630416596333918096th^{23456787}(x) + 4144233477482786656th^{23456789}(x) - 905498831380020504th^{23456791}(x) + 8987983570778790960th^{23456793}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!