本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln({x}^{2} + 2x - 15) + (\frac{1}{8})ln(\frac{(x + 5)}{(x - 3)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x^{2} + 2x - 15) + \frac{1}{8}ln(\frac{x}{(x - 3)} + \frac{5}{(x - 3)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x^{2} + 2x - 15) + \frac{1}{8}ln(\frac{x}{(x - 3)} + \frac{5}{(x - 3)})\right)}{dx}\\=&\frac{(2x + 2 + 0)}{(x^{2} + 2x - 15)} + \frac{\frac{1}{8}((\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{1}{(x - 3)} + 5(\frac{-(1 + 0)}{(x - 3)^{2}}))}{(\frac{x}{(x - 3)} + \frac{5}{(x - 3)})}\\=&\frac{2x}{(x^{2} + 2x - 15)} - \frac{x}{8(x - 3)^{2}(\frac{x}{(x - 3)} + \frac{5}{(x - 3)})} - \frac{5}{8(x - 3)^{2}(\frac{x}{(x - 3)} + \frac{5}{(x - 3)})} + \frac{1}{8(\frac{x}{(x - 3)} + \frac{5}{(x - 3)})(x - 3)} + \frac{2}{(x^{2} + 2x - 15)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!