本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数th(3lg(x - 3) - lg(x - 1)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( th(3lg(x - 3) - lg(x - 1))\right)}{dx}\\=&(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})\\=& - \frac{3th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln{10}} + \frac{th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln{10}} + \frac{3}{(x - 3)ln{10}} - \frac{1}{(x - 1)ln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{3th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln{10}} + \frac{th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln{10}} + \frac{3}{(x - 3)ln{10}} - \frac{1}{(x - 1)ln{10}}\right)}{dx}\\=& - \frac{3(\frac{-(1 + 0)}{(x - 3)^{2}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln{10}} - \frac{3*-0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{3*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)ln{10}} + \frac{(\frac{-(1 + 0)}{(x - 1)^{2}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln{10}} + \frac{-0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)ln{10}} + \frac{3(\frac{-(1 + 0)}{(x - 3)^{2}})}{ln{10}} + \frac{3*-0}{(x - 3)ln^{2}{10}} - \frac{(\frac{-(1 + 0)}{(x - 1)^{2}})}{ln{10}} - \frac{-0}{(x - 1)ln^{2}{10}}\\=&\frac{3th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln{10}} - \frac{18th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} + \frac{18th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} - \frac{th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln{10}} + \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} - \frac{2th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} + \frac{2th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{3}{(x - 3)^{2}ln{10}} + \frac{1}{(x - 1)^{2}ln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{3th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln{10}} - \frac{18th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} + \frac{18th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} - \frac{th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln{10}} + \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} - \frac{2th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} + \frac{2th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{3}{(x - 3)^{2}ln{10}} + \frac{1}{(x - 1)^{2}ln{10}}\right)}{dx}\\=&\frac{3(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln{10}} + \frac{3*-0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{3*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}ln{10}} - \frac{18(\frac{-2(1 + 0)}{(x - 3)^{3}})th(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{18*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} - \frac{18(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}ln^{2}{10}} + \frac{6(\frac{-(1 + 0)}{(x - 1)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{6*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{3}{10}} + \frac{6(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)ln^{2}{10}} + \frac{18(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{3}(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{18*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} + \frac{18*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}ln^{2}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{6*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{3}{10}} - \frac{6*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)ln^{2}{10}} - \frac{(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln{10}} - \frac{-0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}ln{10}} + \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{6(\frac{-(1 + 0)}{(x - 1)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{6*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{3}{10}} + \frac{6(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)ln^{2}{10}} - \frac{2(\frac{-2(1 + 0)}{(x - 1)^{3}})th(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{2*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} - \frac{2(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}ln^{2}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{6*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{3}{10}} - \frac{6*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)ln^{2}{10}} + \frac{2(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{3}(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{2*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} + \frac{2*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}ln^{2}{10}} - \frac{3(\frac{-2(1 + 0)}{(x - 3)^{3}})}{ln{10}} - \frac{3*-0}{(x - 3)^{2}ln^{2}{10}} + \frac{(\frac{-2(1 + 0)}{(x - 1)^{3}})}{ln{10}} + \frac{-0}{(x - 1)^{2}ln^{2}{10}}\\=& - \frac{6th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln{10}} + \frac{54th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} - \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} - \frac{54th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} + \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} + \frac{216th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} - \frac{144th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{162th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} + \frac{108th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{12th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} - \frac{12th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} + \frac{24th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{54th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{36th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} + \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} - \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{12th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} + \frac{12th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} - \frac{72th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{48th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{18th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{2th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln{10}} - \frac{8th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{6th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{18}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{12}{(x - 3)(x - 1)^{2}ln^{3}{10}} + \frac{2}{(x - 1)^{3}ln^{3}{10}} + \frac{36}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{6}{(x - 1)^{2}(x - 3)ln^{3}{10}} - \frac{54}{(x - 3)^{3}ln^{3}{10}} + \frac{6}{(x - 3)^{3}ln{10}} - \frac{2}{(x - 1)^{3}ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{6th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln{10}} + \frac{54th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} - \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} - \frac{54th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} + \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} + \frac{216th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} - \frac{144th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{162th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} + \frac{108th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{12th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} - \frac{12th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} + \frac{24th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{54th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{36th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} + \frac{6th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} - \frac{6th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{12th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} + \frac{12th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} - \frac{72th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{48th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{18th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{2th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln{10}} - \frac{8th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{6th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{18}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{12}{(x - 3)(x - 1)^{2}ln^{3}{10}} + \frac{2}{(x - 1)^{3}ln^{3}{10}} + \frac{36}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{6}{(x - 1)^{2}(x - 3)ln^{3}{10}} - \frac{54}{(x - 3)^{3}ln^{3}{10}} + \frac{6}{(x - 3)^{3}ln{10}} - \frac{2}{(x - 1)^{3}ln{10}}\right)}{dx}\\=& - \frac{6(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln{10}} - \frac{6*-0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} - \frac{6*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln{10}} + \frac{54(\frac{-3(1 + 0)}{(x - 3)^{4}})th(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{54*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} + \frac{54(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{2}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 1)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{6(\frac{-2(1 + 0)}{(x - 3)^{3}})th(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{6*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{6(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{2}{10}} - \frac{54(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{3}(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{54*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} - \frac{54*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{2}{10}} + \frac{6(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{6(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{6*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} + \frac{6*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{2}{10}} + \frac{216(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln^{3}{10}} + \frac{216*-3*0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{4}{10}} + \frac{216*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{3}{10}} - \frac{144(\frac{-(1 + 0)}{(x - 1)^{2}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} - \frac{144(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} - \frac{144*-3*0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{4}{10}} - \frac{144*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{162(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{4}(3lg(x - 3) - lg(x - 1))}{ln^{3}{10}} - \frac{162*-3*0th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{4}{10}} - \frac{162*4th^{3}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{3}{10}} + \frac{108(\frac{-(1 + 0)}{(x - 1)^{2}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} + \frac{108(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} + \frac{108*-3*0th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{4}{10}} + \frac{108*4th^{3}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{12(\frac{-2(1 + 0)}{(x - 1)^{3}})th(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{12(\frac{-(1 + 0)}{(x - 3)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{12*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} - \frac{12(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{2}{10}} - \frac{12(\frac{-2(1 + 0)}{(x - 3)^{3}})th(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{12(\frac{-(1 + 0)}{(x - 1)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{12*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{12(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{2}{10}} + \frac{24(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} + \frac{24(\frac{-(1 + 0)}{(x - 3)^{2}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} + \frac{24*-3*0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{4}{10}} + \frac{24*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{54(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} + \frac{54(\frac{-(1 + 0)}{(x - 1)^{2}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} + \frac{54*-3*0th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{4}{10}} + \frac{54*4th^{3}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{36(\frac{-(1 + 0)}{(x - 3)^{2}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} - \frac{36(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} - \frac{36*-3*0th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{4}{10}} - \frac{36*4th^{3}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{6(\frac{-2(1 + 0)}{(x - 1)^{3}})th(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{6*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{6(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{2}{10}} + \frac{6(\frac{-3(1 + 0)}{(x - 1)^{4}})th(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{6*-2*0th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{6(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{2}{10}} + \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} + \frac{6(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{6*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} + \frac{6*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{2}{10}} - \frac{6(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{3}(3lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{6*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} - \frac{6*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{2}{10}} + \frac{12(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{12(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} + \frac{12*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{12*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{2}{10}} + \frac{12(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{12(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{12*-2*0th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{12*3th^{2}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{2}{10}} - \frac{72(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} - \frac{72(\frac{-(1 + 0)}{(x - 1)^{2}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} - \frac{72*-3*0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{4}{10}} - \frac{72*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{48(\frac{-(1 + 0)}{(x - 3)^{2}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} + \frac{48(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} + \frac{48*-3*0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{4}{10}} + \frac{48*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{18(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} - \frac{18(\frac{-(1 + 0)}{(x - 3)^{2}})th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} - \frac{18*-3*0th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{4}{10}} - \frac{18*4th^{3}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{2(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln{10}} + \frac{2*-0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{2*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln{10}} - \frac{8(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{2}(3lg(x - 3) - lg(x - 1))}{ln^{3}{10}} - \frac{8*-3*0th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{4}{10}} - \frac{8*2th(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{3}{10}} + \frac{6(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{4}(3lg(x - 3) - lg(x - 1))}{ln^{3}{10}} + \frac{6*-3*0th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{4}{10}} + \frac{6*4th^{3}(3lg(x - 3) - lg(x - 1))(1 - th^{2}(3lg(x - 3) - lg(x - 1)))(\frac{3(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{3}{10}} + \frac{18(\frac{-2(1 + 0)}{(x - 3)^{3}})}{(x - 1)ln^{3}{10}} + \frac{18(\frac{-(1 + 0)}{(x - 1)^{2}})}{(x - 3)^{2}ln^{3}{10}} + \frac{18*-3*0}{(x - 3)^{2}(x - 1)ln^{4}{10}} - \frac{12(\frac{-(1 + 0)}{(x - 3)^{2}})}{(x - 1)^{2}ln^{3}{10}} - \frac{12(\frac{-2(1 + 0)}{(x - 1)^{3}})}{(x - 3)ln^{3}{10}} - \frac{12*-3*0}{(x - 3)(x - 1)^{2}ln^{4}{10}} + \frac{2(\frac{-3(1 + 0)}{(x - 1)^{4}})}{ln^{3}{10}} + \frac{2*-3*0}{(x - 1)^{3}ln^{4}{10}} + \frac{36(\frac{-(1 + 0)}{(x - 1)^{2}})}{(x - 3)^{2}ln^{3}{10}} + \frac{36(\frac{-2(1 + 0)}{(x - 3)^{3}})}{(x - 1)ln^{3}{10}} + \frac{36*-3*0}{(x - 1)(x - 3)^{2}ln^{4}{10}} - \frac{6(\frac{-2(1 + 0)}{(x - 1)^{3}})}{(x - 3)ln^{3}{10}} - \frac{6(\frac{-(1 + 0)}{(x - 3)^{2}})}{(x - 1)^{2}ln^{3}{10}} - \frac{6*-3*0}{(x - 1)^{2}(x - 3)ln^{4}{10}} - \frac{54(\frac{-3(1 + 0)}{(x - 3)^{4}})}{ln^{3}{10}} - \frac{54*-3*0}{(x - 3)^{3}ln^{4}{10}} + \frac{6(\frac{-3(1 + 0)}{(x - 3)^{4}})}{ln{10}} + \frac{6*-0}{(x - 3)^{3}ln^{2}{10}} - \frac{2(\frac{-3(1 + 0)}{(x - 1)^{4}})}{ln{10}} - \frac{2*-0}{(x - 1)^{3}ln^{2}{10}}\\=&\frac{18th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln{10}} - \frac{198th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{2}{10}} + \frac{12th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{2}{10}} + \frac{198th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{2}{10}} - \frac{12th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{2}{10}} - \frac{1296th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{3}{10}} + \frac{306th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{3}{10}} + \frac{972th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{3}{10}} - \frac{270th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{3}{10}} + \frac{18th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{2}{10}} + \frac{36th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{2}{10}} + \frac{216th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{3}{10}} - \frac{378th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{3}{10}} - \frac{108th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{3}{10}} + \frac{1296th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{4}{10}} - \frac{1296th(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{4}{10}} - \frac{3240th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{4}{10}} + \frac{2808th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{4}{10}} - \frac{18th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{2}{10}} - \frac{36th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{2}{10}} + \frac{432th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{4}{10}} + \frac{1512th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{4}{10}} - \frac{1080th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{4}{10}} + \frac{1944th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{4}{10}} - \frac{1296th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{4}{10}} + \frac{558th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{3}{10}} - \frac{1080th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{4}{10}} - \frac{1296th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{4}{10}} + \frac{648th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{4}{10}} - \frac{102th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{3}{10}} + \frac{48th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{3}{10}} + \frac{90th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{3}{10}} - \frac{36th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{3}{10}} - \frac{108th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{3}{10}} - \frac{48th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{4}{10}} + \frac{312th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{4}{10}} + \frac{36th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{2}{10}} + \frac{648th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{4}{10}} + \frac{18th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{2}{10}} - \frac{144th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{4}{10}} - \frac{186th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{3}{10}} + \frac{72th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{3}{10}} + \frac{126th^{4}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{3}{10}} - \frac{432th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{4}{10}} + \frac{432th(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{4}{10}} - \frac{22th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{2}{10}} + \frac{12th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{2}{10}} - \frac{12th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{2}{10}} + \frac{22th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{2}{10}} - \frac{18th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{2}{10}} - \frac{36th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{2}{10}} - \frac{144th(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{4}{10}} + \frac{168th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{4}{10}} + \frac{16th(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{4}{10}} - \frac{40th^{3}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{4}{10}} - \frac{144th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{4}{10}} + \frac{24th^{5}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{4}{10}} - \frac{12}{(x - 3)^{2}(x - 1)^{2}ln^{3}{10}} + \frac{24}{(x - 3)(x - 1)^{3}ln^{3}{10}} - \frac{72}{(x - 1)(x - 3)^{3}ln^{3}{10}} - \frac{60}{(x - 1)^{2}(x - 3)^{2}ln^{3}{10}} + \frac{48}{(x - 1)^{3}(x - 3)ln^{3}{10}} - \frac{6th^{2}(3lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln{10}} - \frac{144}{(x - 3)^{3}(x - 1)ln^{3}{10}} + \frac{324}{(x - 3)^{4}ln^{3}{10}} - \frac{12}{(x - 1)^{4}ln^{3}{10}} - \frac{18}{(x - 3)^{4}ln{10}} + \frac{6}{(x - 1)^{4}ln{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!