本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数th(2lg(x - 3) - lg(x - 1)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( th(2lg(x - 3) - lg(x - 1))\right)}{dx}\\=&(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})\\=& - \frac{2th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln{10}} + \frac{th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln{10}} + \frac{2}{(x - 3)ln{10}} - \frac{1}{(x - 1)ln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{2th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln{10}} + \frac{th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln{10}} + \frac{2}{(x - 3)ln{10}} - \frac{1}{(x - 1)ln{10}}\right)}{dx}\\=& - \frac{2(\frac{-(1 + 0)}{(x - 3)^{2}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln{10}} - \frac{2*-0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{2*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)ln{10}} + \frac{(\frac{-(1 + 0)}{(x - 1)^{2}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln{10}} + \frac{-0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)ln{10}} + \frac{2(\frac{-(1 + 0)}{(x - 3)^{2}})}{ln{10}} + \frac{2*-0}{(x - 3)ln^{2}{10}} - \frac{(\frac{-(1 + 0)}{(x - 1)^{2}})}{ln{10}} - \frac{-0}{(x - 1)ln^{2}{10}}\\=&\frac{2th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln{10}} - \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} + \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} - \frac{th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln{10}} + \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} - \frac{2th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} + \frac{2th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{2}{(x - 3)^{2}ln{10}} + \frac{1}{(x - 1)^{2}ln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln{10}} - \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} + \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{2}{10}} - \frac{th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln{10}} + \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} - \frac{2th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{2}{10}} + \frac{2th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{2}{(x - 3)^{2}ln{10}} + \frac{1}{(x - 1)^{2}ln{10}}\right)}{dx}\\=&\frac{2(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln{10}} + \frac{2*-0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{2*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}ln{10}} - \frac{8(\frac{-2(1 + 0)}{(x - 3)^{3}})th(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{8*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} - \frac{8(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}ln^{2}{10}} + \frac{4(\frac{-(1 + 0)}{(x - 1)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{4*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{3}{10}} + \frac{4(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)ln^{2}{10}} + \frac{8(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{3}(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{8*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} + \frac{8*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}ln^{2}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{4*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)ln^{3}{10}} - \frac{4*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)ln^{2}{10}} - \frac{(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln{10}} - \frac{-0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}ln{10}} + \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{4(\frac{-(1 + 0)}{(x - 1)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{4*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{3}{10}} + \frac{4(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)ln^{2}{10}} - \frac{2(\frac{-2(1 + 0)}{(x - 1)^{3}})th(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{2*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} - \frac{2(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}ln^{2}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{4*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)ln^{3}{10}} - \frac{4*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)ln^{2}{10}} + \frac{2(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{3}(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{2*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} + \frac{2*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}ln^{2}{10}} - \frac{2(\frac{-2(1 + 0)}{(x - 3)^{3}})}{ln{10}} - \frac{2*-0}{(x - 3)^{2}ln^{2}{10}} + \frac{(\frac{-2(1 + 0)}{(x - 1)^{3}})}{ln{10}} + \frac{-0}{(x - 1)^{2}ln^{2}{10}}\\=& - \frac{4th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln{10}} + \frac{24th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} - \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} - \frac{24th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} + \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} + \frac{64th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} - \frac{64th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{48th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} + \frac{48th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} - \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} + \frac{16th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{24th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{24th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} + \frac{6th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} - \frac{6th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} + \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} - \frac{32th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{32th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{12th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{2th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln{10}} - \frac{8th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{6th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{8}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{8}{(x - 3)(x - 1)^{2}ln^{3}{10}} + \frac{2}{(x - 1)^{3}ln^{3}{10}} + \frac{16}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{4}{(x - 1)^{2}(x - 3)ln^{3}{10}} - \frac{16}{(x - 3)^{3}ln^{3}{10}} + \frac{4}{(x - 3)^{3}ln{10}} - \frac{2}{(x - 1)^{3}ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{4th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln{10}} + \frac{24th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} - \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} - \frac{24th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} + \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{2}{10}} + \frac{64th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} - \frac{64th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{48th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} + \frac{48th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} - \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} + \frac{16th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{24th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{24th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{4th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} + \frac{6th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{4th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{2}{10}} - \frac{6th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{2}{10}} + \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{2}{10}} - \frac{32th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{32th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{12th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{2th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln{10}} - \frac{8th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{6th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{8}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{8}{(x - 3)(x - 1)^{2}ln^{3}{10}} + \frac{2}{(x - 1)^{3}ln^{3}{10}} + \frac{16}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{4}{(x - 1)^{2}(x - 3)ln^{3}{10}} - \frac{16}{(x - 3)^{3}ln^{3}{10}} + \frac{4}{(x - 3)^{3}ln{10}} - \frac{2}{(x - 1)^{3}ln{10}}\right)}{dx}\\=& - \frac{4(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln{10}} - \frac{4*-0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{2}{10}} - \frac{4*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln{10}} + \frac{24(\frac{-3(1 + 0)}{(x - 3)^{4}})th(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{24*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} + \frac{24(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{2}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 1)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{4(\frac{-2(1 + 0)}{(x - 3)^{3}})th(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{4*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{4(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{2}{10}} - \frac{24(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{3}(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{24*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{3}{10}} - \frac{24*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{2}{10}} + \frac{4(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{4(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{4*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{3}{10}} + \frac{4*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{2}{10}} + \frac{64(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln^{3}{10}} + \frac{64*-3*0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{4}{10}} + \frac{64*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{3}{10}} - \frac{64(\frac{-(1 + 0)}{(x - 1)^{2}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} - \frac{64(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} - \frac{64*-3*0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{4}{10}} - \frac{64*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{48(\frac{-3(1 + 0)}{(x - 3)^{4}})th^{4}(2lg(x - 3) - lg(x - 1))}{ln^{3}{10}} - \frac{48*-3*0th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}ln^{4}{10}} - \frac{48*4th^{3}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{3}ln^{3}{10}} + \frac{48(\frac{-(1 + 0)}{(x - 1)^{2}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} + \frac{48(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} + \frac{48*-3*0th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{2}ln^{4}{10}} + \frac{48*4th^{3}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)(x - 3)^{2}ln^{3}{10}} - \frac{8(\frac{-2(1 + 0)}{(x - 1)^{3}})th(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{8(\frac{-(1 + 0)}{(x - 3)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{8*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} - \frac{8(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{2}{10}} - \frac{8(\frac{-2(1 + 0)}{(x - 3)^{3}})th(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} - \frac{8(\frac{-(1 + 0)}{(x - 1)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} - \frac{8*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{8(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{2}{10}} + \frac{16(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} + \frac{16(\frac{-(1 + 0)}{(x - 3)^{2}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} + \frac{16*-3*0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{4}{10}} + \frac{16*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{24(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} + \frac{24(\frac{-(1 + 0)}{(x - 1)^{2}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} + \frac{24*-3*0th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{4}{10}} + \frac{24*4th^{3}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{3}{10}} - \frac{24(\frac{-(1 + 0)}{(x - 3)^{2}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} - \frac{24(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} - \frac{24*-3*0th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{4}{10}} - \frac{24*4th^{3}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} - \frac{4(\frac{-2(1 + 0)}{(x - 1)^{3}})th(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} - \frac{4*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{4(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{2}{10}} + \frac{6(\frac{-3(1 + 0)}{(x - 1)^{4}})th(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} + \frac{6*-2*0th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} + \frac{6(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{2}{10}} + \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} + \frac{4(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{4*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{3}{10}} + \frac{4*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{2}{10}} - \frac{6(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{3}(2lg(x - 3) - lg(x - 1))}{ln^{2}{10}} - \frac{6*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{3}{10}} - \frac{6*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{2}{10}} + \frac{8(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{2}{10}} + \frac{8(\frac{-(1 + 0)}{(x - 3)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{2}{10}} + \frac{8*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{8*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{2}{10}} + \frac{8(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{2}{10}} + \frac{8(\frac{-(1 + 0)}{(x - 1)^{2}})th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{2}{10}} + \frac{8*-2*0th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{8*3th^{2}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{2}{10}} - \frac{32(\frac{-2(1 + 0)}{(x - 3)^{3}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)ln^{3}{10}} - \frac{32(\frac{-(1 + 0)}{(x - 1)^{2}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}ln^{3}{10}} - \frac{32*-3*0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)ln^{4}{10}} - \frac{32*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)^{2}(x - 1)ln^{3}{10}} + \frac{32(\frac{-(1 + 0)}{(x - 3)^{2}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} + \frac{32(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} + \frac{32*-3*0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{2}ln^{4}{10}} + \frac{32*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 3)(x - 1)^{2}ln^{3}{10}} - \frac{12(\frac{-2(1 + 0)}{(x - 1)^{3}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)ln^{3}{10}} - \frac{12(\frac{-(1 + 0)}{(x - 3)^{2}})th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}ln^{3}{10}} - \frac{12*-3*0th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)ln^{4}{10}} - \frac{12*4th^{3}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{2}(x - 3)ln^{3}{10}} + \frac{2(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln{10}} + \frac{2*-0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{2}{10}} + \frac{2*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln{10}} - \frac{8(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{2}(2lg(x - 3) - lg(x - 1))}{ln^{3}{10}} - \frac{8*-3*0th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{4}{10}} - \frac{8*2th(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{3}{10}} + \frac{6(\frac{-3(1 + 0)}{(x - 1)^{4}})th^{4}(2lg(x - 3) - lg(x - 1))}{ln^{3}{10}} + \frac{6*-3*0th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}ln^{4}{10}} + \frac{6*4th^{3}(2lg(x - 3) - lg(x - 1))(1 - th^{2}(2lg(x - 3) - lg(x - 1)))(\frac{2(1 + 0)}{ln{10}(x - 3)} - \frac{(1 + 0)}{ln{10}(x - 1)})}{(x - 1)^{3}ln^{3}{10}} + \frac{8(\frac{-2(1 + 0)}{(x - 3)^{3}})}{(x - 1)ln^{3}{10}} + \frac{8(\frac{-(1 + 0)}{(x - 1)^{2}})}{(x - 3)^{2}ln^{3}{10}} + \frac{8*-3*0}{(x - 3)^{2}(x - 1)ln^{4}{10}} - \frac{8(\frac{-(1 + 0)}{(x - 3)^{2}})}{(x - 1)^{2}ln^{3}{10}} - \frac{8(\frac{-2(1 + 0)}{(x - 1)^{3}})}{(x - 3)ln^{3}{10}} - \frac{8*-3*0}{(x - 3)(x - 1)^{2}ln^{4}{10}} + \frac{2(\frac{-3(1 + 0)}{(x - 1)^{4}})}{ln^{3}{10}} + \frac{2*-3*0}{(x - 1)^{3}ln^{4}{10}} + \frac{16(\frac{-(1 + 0)}{(x - 1)^{2}})}{(x - 3)^{2}ln^{3}{10}} + \frac{16(\frac{-2(1 + 0)}{(x - 3)^{3}})}{(x - 1)ln^{3}{10}} + \frac{16*-3*0}{(x - 1)(x - 3)^{2}ln^{4}{10}} - \frac{4(\frac{-2(1 + 0)}{(x - 1)^{3}})}{(x - 3)ln^{3}{10}} - \frac{4(\frac{-(1 + 0)}{(x - 3)^{2}})}{(x - 1)^{2}ln^{3}{10}} - \frac{4*-3*0}{(x - 1)^{2}(x - 3)ln^{4}{10}} - \frac{16(\frac{-3(1 + 0)}{(x - 3)^{4}})}{ln^{3}{10}} - \frac{16*-3*0}{(x - 3)^{3}ln^{4}{10}} + \frac{4(\frac{-3(1 + 0)}{(x - 3)^{4}})}{ln{10}} + \frac{4*-0}{(x - 3)^{3}ln^{2}{10}} - \frac{2(\frac{-3(1 + 0)}{(x - 1)^{4}})}{ln{10}} - \frac{2*-0}{(x - 1)^{3}ln^{2}{10}}\\=&\frac{12th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln{10}} - \frac{88th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{2}{10}} + \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{2}{10}} + \frac{88th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{2}{10}} - \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{2}{10}} - \frac{384th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{3}{10}} + \frac{136th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{3}{10}} + \frac{288th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{3}{10}} - \frac{120th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{3}{10}} + \frac{12th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{2}{10}} + \frac{24th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{2}{10}} + \frac{84th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{3}{10}} - \frac{168th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{3}{10}} - \frac{36th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{3}{10}} + \frac{256th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{4}{10}} - \frac{384th(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{4}{10}} - \frac{640th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{4}{10}} + \frac{832th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{4}{10}} - \frac{12th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{2}{10}} - \frac{24th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{2}{10}} + \frac{192th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{4}{10}} + \frac{448th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{4}{10}} - \frac{480th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{4}{10}} + \frac{384th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{4}ln^{4}{10}} - \frac{384th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 1)(x - 3)^{3}ln^{4}{10}} + \frac{248th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{3}{10}} - \frac{480th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{4}{10}} - \frac{384th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{4}{10}} + \frac{288th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{4}{10}} - \frac{68th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{3}{10}} + \frac{48th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{3}{10}} + \frac{60th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{3}{10}} - \frac{36th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{3}{10}} - \frac{36th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{3}{10}} - \frac{32th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{4}{10}} + \frac{208th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{4}{10}} + \frac{24th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{2}{10}} + \frac{288th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{2}(x - 3)^{2}ln^{4}{10}} + \frac{12th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{2}{10}} - \frac{96th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{4}{10}} - \frac{124th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{3}{10}} + \frac{12th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{3}{10}} + \frac{84th^{4}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{3}{10}} - \frac{128th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{3}(x - 1)ln^{4}{10}} + \frac{192th(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{4}{10}} - \frac{22th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{2}{10}} + \frac{8th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{2}{10}} - \frac{8th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{2}{10}} + \frac{22th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{2}{10}} - \frac{12th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 3)^{2}(x - 1)^{2}ln^{2}{10}} - \frac{24th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{2}{10}} - \frac{96th(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{4}{10}} + \frac{112th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{3}(x - 3)ln^{4}{10}} + \frac{16th(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{4}{10}} - \frac{40th^{3}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{4}{10}} - \frac{96th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 3)(x - 1)^{3}ln^{4}{10}} + \frac{24th^{5}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln^{4}{10}} + \frac{16}{(x - 3)(x - 1)^{3}ln^{3}{10}} - \frac{32}{(x - 1)(x - 3)^{3}ln^{3}{10}} - \frac{24}{(x - 1)^{2}(x - 3)^{2}ln^{3}{10}} + \frac{32}{(x - 1)^{3}(x - 3)ln^{3}{10}} - \frac{6th^{2}(2lg(x - 3) - lg(x - 1))}{(x - 1)^{4}ln{10}} - \frac{64}{(x - 3)^{3}(x - 1)ln^{3}{10}} + \frac{96}{(x - 3)^{4}ln^{3}{10}} - \frac{12}{(x - 1)^{4}ln^{3}{10}} - \frac{12}{(x - 3)^{4}ln{10}} + \frac{6}{(x - 1)^{4}ln{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!