本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{arcsin(x)}^{\frac{1}{2}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin^{\frac{1}{2}}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin^{\frac{1}{2}}(x)\right)}{dx}\\=&(\frac{\frac{1}{2}(1)}{arcsin^{\frac{1}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{1}{2(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{1}{2}}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{2(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{1}{2}}(x)}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{2arcsin^{\frac{1}{2}}(x)} + \frac{(\frac{\frac{-1}{2}(1)}{arcsin^{\frac{3}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{2(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{x}{2(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{1}{2}}(x)} - \frac{1}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{3}{2}}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{x}{2(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{1}{2}}(x)} - \frac{1}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{3}{2}}(x)}\right)}{dx}\\=&\frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x}{2arcsin^{\frac{1}{2}}(x)} + \frac{1}{2(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{1}{2}}(x)} + \frac{x(\frac{\frac{-1}{2}(1)}{arcsin^{\frac{3}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{2(-x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{4(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{4(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{(\frac{\frac{-3}{2}(1)}{arcsin^{\frac{5}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{3x^{2}}{2(-x^{2} + 1)^{\frac{5}{2}}arcsin^{\frac{1}{2}}(x)} + \frac{1}{2(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{1}{2}}(x)} - \frac{x}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{x}{2(-x^{2} + 1)^{2}arcsin^{\frac{3}{2}}(x)} + \frac{3}{8(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{5}{2}}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3x^{2}}{2(-x^{2} + 1)^{\frac{5}{2}}arcsin^{\frac{1}{2}}(x)} + \frac{1}{2(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{1}{2}}(x)} - \frac{x}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{x}{2(-x^{2} + 1)^{2}arcsin^{\frac{3}{2}}(x)} + \frac{3}{8(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{5}{2}}(x)}\right)}{dx}\\=&\frac{3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}}{2arcsin^{\frac{1}{2}}(x)} + \frac{3*2x}{2(-x^{2} + 1)^{\frac{5}{2}}arcsin^{\frac{1}{2}}(x)} + \frac{3x^{2}(\frac{\frac{-1}{2}(1)}{arcsin^{\frac{3}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{2(-x^{2} + 1)^{\frac{5}{2}}} + \frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})}{2arcsin^{\frac{1}{2}}(x)} + \frac{(\frac{\frac{-1}{2}(1)}{arcsin^{\frac{3}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{2(-x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x}{4(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x}{4(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{1}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{x(\frac{\frac{-3}{2}(1)}{arcsin^{\frac{5}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x}{2arcsin^{\frac{3}{2}}(x)} - \frac{1}{2(-x^{2} + 1)^{2}arcsin^{\frac{3}{2}}(x)} - \frac{x(\frac{\frac{-3}{2}(1)}{arcsin^{\frac{5}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{2(-x^{2} + 1)^{2}} + \frac{3(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})}{8(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{5}{2}}(x)} + \frac{3(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{8(-x^{2} + 1)arcsin^{\frac{5}{2}}(x)} + \frac{3(\frac{\frac{-5}{2}(1)}{arcsin^{\frac{7}{2}}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{8(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{15x^{3}}{2(-x^{2} + 1)^{\frac{7}{2}}arcsin^{\frac{1}{2}}(x)} + \frac{9x}{2(-x^{2} + 1)^{\frac{5}{2}}arcsin^{\frac{1}{2}}(x)} - \frac{3x^{2}}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{1}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{\frac{3}{2}}(x)} - \frac{3x^{2}}{(-x^{2} + 1)^{3}arcsin^{\frac{3}{2}}(x)} - \frac{3}{4(-x^{2} + 1)^{2}arcsin^{\frac{3}{2}}(x)} + \frac{3x}{8(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{5}{2}}(x)} + \frac{3x}{4(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}arcsin^{\frac{5}{2}}(x)} + \frac{9x}{8(-x^{2} + 1)^{\frac{5}{2}}arcsin^{\frac{5}{2}}(x)} - \frac{15}{16(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{\frac{7}{2}}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!