数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{cos(x)}^{(\frac{2}{7})} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {cos(x)}^{\frac{2}{7}}\right)}{dx}\\=&({cos(x)}^{\frac{2}{7}}((0)ln(cos(x)) + \frac{(\frac{2}{7})(-sin(x))}{(cos(x))}))\\=&\frac{-2sin(x)}{7cos^{\frac{5}{7}}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2sin(x)}{7cos^{\frac{5}{7}}(x)}\right)}{dx}\\=&\frac{-2cos(x)}{7cos^{\frac{5}{7}}(x)} - \frac{2sin(x)*\frac{5}{7}sin(x)}{7cos^{\frac{12}{7}}(x)}\\=&\frac{-2cos^{\frac{2}{7}}(x)}{7} - \frac{10sin^{2}(x)}{49cos^{\frac{12}{7}}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2cos^{\frac{2}{7}}(x)}{7} - \frac{10sin^{2}(x)}{49cos^{\frac{12}{7}}(x)}\right)}{dx}\\=&\frac{-2*\frac{-2}{7}sin(x)}{7cos^{\frac{5}{7}}(x)} - \frac{10*2sin(x)cos(x)}{49cos^{\frac{12}{7}}(x)} - \frac{10sin^{2}(x)*\frac{12}{7}sin(x)}{49cos^{\frac{19}{7}}(x)}\\=& - \frac{16sin(x)}{49cos^{\frac{5}{7}}(x)} - \frac{120sin^{3}(x)}{343cos^{\frac{19}{7}}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{16sin(x)}{49cos^{\frac{5}{7}}(x)} - \frac{120sin^{3}(x)}{343cos^{\frac{19}{7}}(x)}\right)}{dx}\\=& - \frac{16cos(x)}{49cos^{\frac{5}{7}}(x)} - \frac{16sin(x)*\frac{5}{7}sin(x)}{49cos^{\frac{12}{7}}(x)} - \frac{120*3sin^{2}(x)cos(x)}{343cos^{\frac{19}{7}}(x)} - \frac{120sin^{3}(x)*\frac{19}{7}sin(x)}{343cos^{\frac{26}{7}}(x)}\\=& - \frac{16cos^{\frac{2}{7}}(x)}{49} - \frac{440sin^{2}(x)}{343cos^{\frac{12}{7}}(x)} - \frac{2280sin^{4}(x)}{2401cos^{\frac{26}{7}}(x)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。