本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{cos(x)}^{(\frac{13}{46})} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {cos(x)}^{\frac{13}{46}}\right)}{dx}\\=&({cos(x)}^{\frac{13}{46}}((0)ln(cos(x)) + \frac{(\frac{13}{46})(-sin(x))}{(cos(x))}))\\=&\frac{-13sin(x)}{46cos^{\frac{33}{46}}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-13sin(x)}{46cos^{\frac{33}{46}}(x)}\right)}{dx}\\=&\frac{-13cos(x)}{46cos^{\frac{33}{46}}(x)} - \frac{13sin(x)*\frac{33}{46}sin(x)}{46cos^{\frac{79}{46}}(x)}\\=&\frac{-13cos^{\frac{13}{46}}(x)}{46} - \frac{429sin^{2}(x)}{2116cos^{\frac{79}{46}}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-13cos^{\frac{13}{46}}(x)}{46} - \frac{429sin^{2}(x)}{2116cos^{\frac{79}{46}}(x)}\right)}{dx}\\=&\frac{-13*\frac{-13}{46}sin(x)}{46cos^{\frac{33}{46}}(x)} - \frac{429*2sin(x)cos(x)}{2116cos^{\frac{79}{46}}(x)} - \frac{429sin^{2}(x)*\frac{79}{46}sin(x)}{2116cos^{\frac{125}{46}}(x)}\\=& - \frac{689sin(x)}{2116cos^{\frac{33}{46}}(x)} - \frac{33891sin^{3}(x)}{97336cos^{\frac{125}{46}}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{689sin(x)}{2116cos^{\frac{33}{46}}(x)} - \frac{33891sin^{3}(x)}{97336cos^{\frac{125}{46}}(x)}\right)}{dx}\\=& - \frac{689cos(x)}{2116cos^{\frac{33}{46}}(x)} - \frac{689sin(x)*\frac{33}{46}sin(x)}{2116cos^{\frac{79}{46}}(x)} - \frac{33891*3sin^{2}(x)cos(x)}{97336cos^{\frac{125}{46}}(x)} - \frac{33891sin^{3}(x)*\frac{125}{46}sin(x)}{97336cos^{\frac{171}{46}}(x)}\\=& - \frac{689cos^{\frac{13}{46}}(x)}{2116} - \frac{62205sin^{2}(x)}{48668cos^{\frac{79}{46}}(x)} - \frac{4236375sin^{4}(x)}{4477456cos^{\frac{171}{46}}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!