本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{x - 1 - tan(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{x - tan(x) - 1}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{x - tan(x) - 1}\right)}{dx}\\=&e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)\\=& - e^{x - tan(x) - 1}sec^{2}(x) + e^{x - tan(x) - 1}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - e^{x - tan(x) - 1}sec^{2}(x) + e^{x - tan(x) - 1}\right)}{dx}\\=& - e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)sec^{2}(x) - e^{x - tan(x) - 1}*2sec^{2}(x)tan(x) + e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)\\=& - 2e^{x - tan(x) - 1}sec^{2}(x) + e^{x - tan(x) - 1}sec^{4}(x) - 2e^{x - tan(x) - 1}tan(x)sec^{2}(x) + e^{x - tan(x) - 1}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - 2e^{x - tan(x) - 1}sec^{2}(x) + e^{x - tan(x) - 1}sec^{4}(x) - 2e^{x - tan(x) - 1}tan(x)sec^{2}(x) + e^{x - tan(x) - 1}\right)}{dx}\\=& - 2e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)sec^{2}(x) - 2e^{x - tan(x) - 1}*2sec^{2}(x)tan(x) + e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)sec^{4}(x) + e^{x - tan(x) - 1}*4sec^{4}(x)tan(x) - 2e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)tan(x)sec^{2}(x) - 2e^{x - tan(x) - 1}sec^{2}(x)(1)sec^{2}(x) - 2e^{x - tan(x) - 1}tan(x)*2sec^{2}(x)tan(x) + e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)\\=&e^{x - tan(x) - 1}sec^{4}(x) + 6e^{x - tan(x) - 1}tan(x)sec^{4}(x) - e^{x - tan(x) - 1}sec^{6}(x) - 6e^{x - tan(x) - 1}tan(x)sec^{2}(x) - 3e^{x - tan(x) - 1}sec^{2}(x) - 4e^{x - tan(x) - 1}tan^{2}(x)sec^{2}(x) + e^{x - tan(x) - 1}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( e^{x - tan(x) - 1}sec^{4}(x) + 6e^{x - tan(x) - 1}tan(x)sec^{4}(x) - e^{x - tan(x) - 1}sec^{6}(x) - 6e^{x - tan(x) - 1}tan(x)sec^{2}(x) - 3e^{x - tan(x) - 1}sec^{2}(x) - 4e^{x - tan(x) - 1}tan^{2}(x)sec^{2}(x) + e^{x - tan(x) - 1}\right)}{dx}\\=&e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)sec^{4}(x) + e^{x - tan(x) - 1}*4sec^{4}(x)tan(x) + 6e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)tan(x)sec^{4}(x) + 6e^{x - tan(x) - 1}sec^{2}(x)(1)sec^{4}(x) + 6e^{x - tan(x) - 1}tan(x)*4sec^{4}(x)tan(x) - e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)sec^{6}(x) - e^{x - tan(x) - 1}*6sec^{6}(x)tan(x) - 6e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)tan(x)sec^{2}(x) - 6e^{x - tan(x) - 1}sec^{2}(x)(1)sec^{2}(x) - 6e^{x - tan(x) - 1}tan(x)*2sec^{2}(x)tan(x) - 3e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)sec^{2}(x) - 3e^{x - tan(x) - 1}*2sec^{2}(x)tan(x) - 4e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)tan^{2}(x)sec^{2}(x) - 4e^{x - tan(x) - 1}*2tan(x)sec^{2}(x)(1)sec^{2}(x) - 4e^{x - tan(x) - 1}tan^{2}(x)*2sec^{2}(x)tan(x) + e^{x - tan(x) - 1}(1 - sec^{2}(x)(1) + 0)\\=&4e^{x - tan(x) - 1}sec^{6}(x) - 12e^{x - tan(x) - 1}tan(x)sec^{6}(x) + 8e^{x - tan(x) - 1}tan(x)sec^{4}(x) - 2e^{x - tan(x) - 1}sec^{4}(x) + 28e^{x - tan(x) - 1}tan^{2}(x)sec^{4}(x) + e^{x - tan(x) - 1}sec^{8}(x) - 12e^{x - tan(x) - 1}tan(x)sec^{2}(x) - 16e^{x - tan(x) - 1}tan^{2}(x)sec^{2}(x) - 4e^{x - tan(x) - 1}sec^{2}(x) - 8e^{x - tan(x) - 1}tan^{3}(x)sec^{2}(x) + e^{x - tan(x) - 1}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!