本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(sqrt(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(sqrt(x))\right)}{dx}\\=&\frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}(sqrt(x))^{\frac{1}{2}}}\\=&\frac{1}{4x^{\frac{1}{2}}sqrt(x)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{4x^{\frac{1}{2}}sqrt(x)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{\frac{-1}{2}}{4x^{\frac{3}{2}}sqrt(x)^{\frac{1}{2}}} + \frac{\frac{-1}{2}*\frac{1}{2}}{4x^{\frac{1}{2}}(x)^{\frac{3}{4}}(x)^{\frac{1}{2}}}\\=&\frac{-1}{8x^{\frac{3}{2}}sqrt(x)^{\frac{1}{2}}} - \frac{1}{16x^{\frac{7}{4}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-1}{8x^{\frac{3}{2}}sqrt(x)^{\frac{1}{2}}} - \frac{1}{16x^{\frac{7}{4}}}\right)}{dx}\\=&\frac{-\frac{-3}{2}}{8x^{\frac{5}{2}}sqrt(x)^{\frac{1}{2}}} - \frac{\frac{-1}{2}*\frac{1}{2}}{8x^{\frac{3}{2}}(x)^{\frac{3}{4}}(x)^{\frac{1}{2}}} - \frac{\frac{-7}{4}}{16x^{\frac{11}{4}}}\\=&\frac{3}{16x^{\frac{5}{2}}sqrt(x)^{\frac{1}{2}}} + \frac{9}{64x^{\frac{11}{4}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3}{16x^{\frac{5}{2}}sqrt(x)^{\frac{1}{2}}} + \frac{9}{64x^{\frac{11}{4}}}\right)}{dx}\\=&\frac{3*\frac{-5}{2}}{16x^{\frac{7}{2}}sqrt(x)^{\frac{1}{2}}} + \frac{3*\frac{-1}{2}*\frac{1}{2}}{16x^{\frac{5}{2}}(x)^{\frac{3}{4}}(x)^{\frac{1}{2}}} + \frac{9*\frac{-11}{4}}{64x^{\frac{15}{4}}}\\=&\frac{-15}{32x^{\frac{7}{2}}sqrt(x)^{\frac{1}{2}}} - \frac{111}{256x^{\frac{15}{4}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!