本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sec(\frac{1}{x}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sec(\frac{1}{x})\right)}{dx}\\=&\frac{sec(\frac{1}{x})tan(\frac{1}{x})*-1}{x^{2}}\\=&\frac{-tan(\frac{1}{x})sec(\frac{1}{x})}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-tan(\frac{1}{x})sec(\frac{1}{x})}{x^{2}}\right)}{dx}\\=&\frac{--2tan(\frac{1}{x})sec(\frac{1}{x})}{x^{3}} - \frac{sec^{2}(\frac{1}{x})(\frac{-1}{x^{2}})sec(\frac{1}{x})}{x^{2}} - \frac{tan(\frac{1}{x})sec(\frac{1}{x})tan(\frac{1}{x})*-1}{x^{2}x^{2}}\\=&\frac{2tan(\frac{1}{x})sec(\frac{1}{x})}{x^{3}} + \frac{sec^{3}(\frac{1}{x})}{x^{4}} + \frac{tan^{2}(\frac{1}{x})sec(\frac{1}{x})}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!