数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 N 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{(1 + \frac{x}{N})}^{N} - e^{N} 关于 N 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x}{N} + 1)^{N} - e^{N}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x}{N} + 1)^{N} - e^{N}\right)}{dN}\\=&((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)})) - e^{N}\\=&(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1) - \frac{x(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)N} - e^{N}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( (\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1) - \frac{x(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)N} - e^{N}\right)}{dN}\\=&((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln(\frac{x}{N} + 1) + \frac{(\frac{x}{N} + 1)^{N}(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)} - \frac{(\frac{-(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{2}})x(\frac{x}{N} + 1)^{N}}{N} - \frac{x*-(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)N^{2}} - \frac{x((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)N} - e^{N}\\=&(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1) - \frac{2x(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{2}} - e^{N}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( (\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1) - \frac{2x(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{2}} - e^{N}\right)}{dN}\\=&((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln^{2}(\frac{x}{N} + 1) + \frac{(\frac{x}{N} + 1)^{N}*2ln(\frac{x}{N} + 1)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)} - \frac{2(\frac{-(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{2}})x(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{N} - \frac{2x*-(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N^{2}} - \frac{2x((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{2x(\frac{x}{N} + 1)^{N}(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)N(\frac{x}{N} + 1)} - \frac{(\frac{-2(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{3}})x^{2}(\frac{x}{N} + 1)^{N}}{N^{3}} - \frac{x^{2}*-3(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{4}} - \frac{x^{2}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{(\frac{-2(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{3}})x^{2}(\frac{x}{N} + 1)^{N}}{N^{2}} + \frac{x^{2}*-2(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{x^{2}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)^{2}N^{2}} - e^{N}\\=&(\frac{x}{N} + 1)^{N}ln^{3}(\frac{x}{N} + 1) - \frac{3x(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{3x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{3x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{2}} - \frac{2x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{5}} + \frac{3x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{4}} + \frac{3x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{4}} - \frac{x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{3}} - e^{N}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( (\frac{x}{N} + 1)^{N}ln^{3}(\frac{x}{N} + 1) - \frac{3x(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{3x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{3x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{2}} - \frac{2x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{5}} + \frac{3x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{4}} + \frac{3x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{4}} - \frac{x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{3}} - e^{N}\right)}{dN}\\=&((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln^{3}(\frac{x}{N} + 1) + \frac{(\frac{x}{N} + 1)^{N}*3ln^{2}(\frac{x}{N} + 1)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)} - \frac{3(\frac{-(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{2}})x(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1)}{N} - \frac{3x*-(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N^{2}} - \frac{3x((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln^{2}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{3x(\frac{x}{N} + 1)^{N}*2ln(\frac{x}{N} + 1)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)N(\frac{x}{N} + 1)} - \frac{3(\frac{-2(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{3}})x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{N^{3}} - \frac{3x^{2}*-3(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{4}} - \frac{3x^{2}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{3}} - \frac{3x^{2}(\frac{x}{N} + 1)^{N}(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{2}N^{3}(\frac{x}{N} + 1)} + \frac{3(\frac{-2(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{3}})x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{N^{2}} + \frac{3x^{2}*-2(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{3x^{2}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{2}} + \frac{3x^{2}(\frac{x}{N} + 1)^{N}(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{2}N^{2}(\frac{x}{N} + 1)} - \frac{2(\frac{-3(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{4}})x^{3}(\frac{x}{N} + 1)^{N}}{N^{5}} - \frac{2x^{3}*-5(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{6}} - \frac{2x^{3}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)^{3}N^{5}} + \frac{3(\frac{-2(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{3}})x^{2}(\frac{x}{N} + 1)^{N}}{N^{4}} + \frac{3x^{2}*-4(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{5}} + \frac{3x^{2}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)^{2}N^{4}} + \frac{3(\frac{-3(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{4}})x^{3}(\frac{x}{N} + 1)^{N}}{N^{4}} + \frac{3x^{3}*-4(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{5}} + \frac{3x^{3}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)^{3}N^{4}} - \frac{(\frac{-3(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)^{4}})x^{3}(\frac{x}{N} + 1)^{N}}{N^{3}} - \frac{x^{3}*-3(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{4}} - \frac{x^{3}((\frac{x}{N} + 1)^{N}((1)ln(\frac{x}{N} + 1) + \frac{(N)(\frac{x*-1}{N^{2}} + 0)}{(\frac{x}{N} + 1)}))}{(\frac{x}{N} + 1)^{3}N^{3}} - e^{N}\\=&(\frac{x}{N} + 1)^{N}ln^{4}(\frac{x}{N} + 1) - \frac{4x(\frac{x}{N} + 1)^{N}ln^{3}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)N} - \frac{6x^{2}(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{3}} + \frac{6x^{2}(\frac{x}{N} + 1)^{N}ln^{2}(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{2}} - \frac{8x^{3}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{3}N^{5}} + \frac{12x^{2}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{2}N^{4}} + \frac{12x^{3}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{3}N^{4}} - \frac{4x^{3}(\frac{x}{N} + 1)^{N}ln(\frac{x}{N} + 1)}{(\frac{x}{N} + 1)^{3}N^{3}} - \frac{12x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{5}} - \frac{6x^{4}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{4}N^{7}} + \frac{16x^{3}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{3}N^{6}} + \frac{11x^{4}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{4}N^{6}} - \frac{12x^{2}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{2}N^{5}} - \frac{6x^{4}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{4}N^{5}} + \frac{x^{4}(\frac{x}{N} + 1)^{N}}{(\frac{x}{N} + 1)^{4}N^{4}} - e^{N}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。