数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数log_{x + \frac{1}{10}}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{x + \frac{1}{10}}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})\\=&\frac{1}{xln(x + \frac{1}{10})} - \frac{log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})ln(x + \frac{1}{10})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{xln(x + \frac{1}{10})} - \frac{log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})ln(x + \frac{1}{10})}\right)}{dx}\\=&\frac{-1}{x^{2}ln(x + \frac{1}{10})} + \frac{-(1 + 0)}{xln^{2}(x + \frac{1}{10})(x + \frac{1}{10})} - \frac{(\frac{-(1 + 0)}{(x + \frac{1}{10})^{2}})log_{x + \frac{1}{10}}^{x}}{ln(x + \frac{1}{10})} - \frac{(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})}{(x + \frac{1}{10})ln(x + \frac{1}{10})} - \frac{log_{x + \frac{1}{10}}^{x}*-(1 + 0)}{(x + \frac{1}{10})ln^{2}(x + \frac{1}{10})(x + \frac{1}{10})}\\=&\frac{-1}{x^{2}ln(x + \frac{1}{10})} - \frac{2}{(x + \frac{1}{10})xln^{2}(x + \frac{1}{10})} + \frac{log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{2}ln(x + \frac{1}{10})} + \frac{2log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{2}ln^{2}(x + \frac{1}{10})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-1}{x^{2}ln(x + \frac{1}{10})} - \frac{2}{(x + \frac{1}{10})xln^{2}(x + \frac{1}{10})} + \frac{log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{2}ln(x + \frac{1}{10})} + \frac{2log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{2}ln^{2}(x + \frac{1}{10})}\right)}{dx}\\=&\frac{--2}{x^{3}ln(x + \frac{1}{10})} - \frac{-(1 + 0)}{x^{2}ln^{2}(x + \frac{1}{10})(x + \frac{1}{10})} - \frac{2(\frac{-(1 + 0)}{(x + \frac{1}{10})^{2}})}{xln^{2}(x + \frac{1}{10})} - \frac{2*-1}{(x + \frac{1}{10})x^{2}ln^{2}(x + \frac{1}{10})} - \frac{2*-2(1 + 0)}{(x + \frac{1}{10})xln^{3}(x + \frac{1}{10})(x + \frac{1}{10})} + \frac{(\frac{-2(1 + 0)}{(x + \frac{1}{10})^{3}})log_{x + \frac{1}{10}}^{x}}{ln(x + \frac{1}{10})} + \frac{(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})}{(x + \frac{1}{10})^{2}ln(x + \frac{1}{10})} + \frac{log_{x + \frac{1}{10}}^{x}*-(1 + 0)}{(x + \frac{1}{10})^{2}ln^{2}(x + \frac{1}{10})(x + \frac{1}{10})} + \frac{2(\frac{-2(1 + 0)}{(x + \frac{1}{10})^{3}})log_{x + \frac{1}{10}}^{x}}{ln^{2}(x + \frac{1}{10})} + \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})}{(x + \frac{1}{10})^{2}ln^{2}(x + \frac{1}{10})} + \frac{2log_{x + \frac{1}{10}}^{x}*-2(1 + 0)}{(x + \frac{1}{10})^{2}ln^{3}(x + \frac{1}{10})(x + \frac{1}{10})}\\=&\frac{2}{x^{3}ln(x + \frac{1}{10})} + \frac{3}{(x + \frac{1}{10})x^{2}ln^{2}(x + \frac{1}{10})} + \frac{3}{(x + \frac{1}{10})^{2}xln^{2}(x + \frac{1}{10})} + \frac{6}{(x + \frac{1}{10})^{2}xln^{3}(x + \frac{1}{10})} - \frac{2log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{3}ln(x + \frac{1}{10})} - \frac{6log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{3}ln^{2}(x + \frac{1}{10})} - \frac{6log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{3}ln^{3}(x + \frac{1}{10})}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{2}{x^{3}ln(x + \frac{1}{10})} + \frac{3}{(x + \frac{1}{10})x^{2}ln^{2}(x + \frac{1}{10})} + \frac{3}{(x + \frac{1}{10})^{2}xln^{2}(x + \frac{1}{10})} + \frac{6}{(x + \frac{1}{10})^{2}xln^{3}(x + \frac{1}{10})} - \frac{2log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{3}ln(x + \frac{1}{10})} - \frac{6log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{3}ln^{2}(x + \frac{1}{10})} - \frac{6log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{3}ln^{3}(x + \frac{1}{10})}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(x + \frac{1}{10})} + \frac{2*-(1 + 0)}{x^{3}ln^{2}(x + \frac{1}{10})(x + \frac{1}{10})} + \frac{3(\frac{-(1 + 0)}{(x + \frac{1}{10})^{2}})}{x^{2}ln^{2}(x + \frac{1}{10})} + \frac{3*-2}{(x + \frac{1}{10})x^{3}ln^{2}(x + \frac{1}{10})} + \frac{3*-2(1 + 0)}{(x + \frac{1}{10})x^{2}ln^{3}(x + \frac{1}{10})(x + \frac{1}{10})} + \frac{3(\frac{-2(1 + 0)}{(x + \frac{1}{10})^{3}})}{xln^{2}(x + \frac{1}{10})} + \frac{3*-1}{(x + \frac{1}{10})^{2}x^{2}ln^{2}(x + \frac{1}{10})} + \frac{3*-2(1 + 0)}{(x + \frac{1}{10})^{2}xln^{3}(x + \frac{1}{10})(x + \frac{1}{10})} + \frac{6(\frac{-2(1 + 0)}{(x + \frac{1}{10})^{3}})}{xln^{3}(x + \frac{1}{10})} + \frac{6*-1}{(x + \frac{1}{10})^{2}x^{2}ln^{3}(x + \frac{1}{10})} + \frac{6*-3(1 + 0)}{(x + \frac{1}{10})^{2}xln^{4}(x + \frac{1}{10})(x + \frac{1}{10})} - \frac{2(\frac{-3(1 + 0)}{(x + \frac{1}{10})^{4}})log_{x + \frac{1}{10}}^{x}}{ln(x + \frac{1}{10})} - \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})}{(x + \frac{1}{10})^{3}ln(x + \frac{1}{10})} - \frac{2log_{x + \frac{1}{10}}^{x}*-(1 + 0)}{(x + \frac{1}{10})^{3}ln^{2}(x + \frac{1}{10})(x + \frac{1}{10})} - \frac{6(\frac{-3(1 + 0)}{(x + \frac{1}{10})^{4}})log_{x + \frac{1}{10}}^{x}}{ln^{2}(x + \frac{1}{10})} - \frac{6(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})}{(x + \frac{1}{10})^{3}ln^{2}(x + \frac{1}{10})} - \frac{6log_{x + \frac{1}{10}}^{x}*-2(1 + 0)}{(x + \frac{1}{10})^{3}ln^{3}(x + \frac{1}{10})(x + \frac{1}{10})} - \frac{6(\frac{-3(1 + 0)}{(x + \frac{1}{10})^{4}})log_{x + \frac{1}{10}}^{x}}{ln^{3}(x + \frac{1}{10})} - \frac{6(\frac{(\frac{(1)}{(x)} - \frac{(1 + 0)log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})})}{(ln(x + \frac{1}{10}))})}{(x + \frac{1}{10})^{3}ln^{3}(x + \frac{1}{10})} - \frac{6log_{x + \frac{1}{10}}^{x}*-3(1 + 0)}{(x + \frac{1}{10})^{3}ln^{4}(x + \frac{1}{10})(x + \frac{1}{10})}\\=&\frac{-6}{x^{4}ln(x + \frac{1}{10})} - \frac{8}{(x + \frac{1}{10})x^{3}ln^{2}(x + \frac{1}{10})} - \frac{6}{(x + \frac{1}{10})^{2}x^{2}ln^{2}(x + \frac{1}{10})} - \frac{12}{(x + \frac{1}{10})^{2}x^{2}ln^{3}(x + \frac{1}{10})} - \frac{8}{(x + \frac{1}{10})^{3}xln^{2}(x + \frac{1}{10})} - \frac{24}{(x + \frac{1}{10})^{3}xln^{3}(x + \frac{1}{10})} - \frac{24}{(x + \frac{1}{10})^{3}xln^{4}(x + \frac{1}{10})} + \frac{6log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{4}ln(x + \frac{1}{10})} + \frac{22log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{4}ln^{2}(x + \frac{1}{10})} + \frac{36log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{4}ln^{3}(x + \frac{1}{10})} + \frac{24log_{x + \frac{1}{10}}^{x}}{(x + \frac{1}{10})^{4}ln^{4}(x + \frac{1}{10})}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。