本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{e^{x}}{cos(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{e^{x}}{cos(x)}\right)}{dx}\\=&\frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)}\\=&\frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)}\right)}{dx}\\=&\frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)} + \frac{e^{x}cos(x)}{cos^{2}(x)} + \frac{e^{x}sin(x)*2sin(x)}{cos^{3}(x)}\\=&\frac{2e^{x}}{cos(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}sin^{2}(x)}{cos^{3}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2e^{x}}{cos(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}sin^{2}(x)}{cos^{3}(x)}\right)}{dx}\\=&\frac{2e^{x}}{cos(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}cos(x)}{cos^{2}(x)} + \frac{2e^{x}sin(x)*2sin(x)}{cos^{3}(x)} + \frac{2e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{2e^{x}*2sin(x)cos(x)}{cos^{3}(x)} + \frac{2e^{x}sin^{2}(x)*3sin(x)}{cos^{4}(x)}\\=&\frac{4e^{x}}{cos(x)} + \frac{8e^{x}sin(x)}{cos^{2}(x)} + \frac{6e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{3}(x)}{cos^{4}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{4e^{x}}{cos(x)} + \frac{8e^{x}sin(x)}{cos^{2}(x)} + \frac{6e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{3}(x)}{cos^{4}(x)}\right)}{dx}\\=&\frac{4e^{x}}{cos(x)} + \frac{4e^{x}sin(x)}{cos^{2}(x)} + \frac{8e^{x}sin(x)}{cos^{2}(x)} + \frac{8e^{x}cos(x)}{cos^{2}(x)} + \frac{8e^{x}sin(x)*2sin(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{6e^{x}*2sin(x)cos(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{2}(x)*3sin(x)}{cos^{4}(x)} + \frac{6e^{x}sin^{3}(x)}{cos^{4}(x)} + \frac{6e^{x}*3sin^{2}(x)cos(x)}{cos^{4}(x)} + \frac{6e^{x}sin^{3}(x)*4sin(x)}{cos^{5}(x)}\\=&\frac{12e^{x}}{cos(x)} + \frac{24e^{x}sin(x)}{cos^{2}(x)} + \frac{40e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{24e^{x}sin^{3}(x)}{cos^{4}(x)} + \frac{24e^{x}sin^{4}(x)}{cos^{5}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!