本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数a{(x + y + z)}^{4} + b{(x + y + z)}^{3} + c{(x + y + z)}^{2} + d(x + y + z) + f 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ax^{4} + 4ayx^{3} + 4azx^{3} + 6ay^{2}x^{2} + 12ayzx^{2} + 6az^{2}x^{2} + 4ay^{3}x + 12ay^{2}zx + 12ayz^{2}x + 4az^{3}x + 4ay^{3}z + 6ay^{2}z^{2} + 4ayz^{3} + ay^{4} + az^{4} + bx^{3} + 3ybx^{2} + 3zbx^{2} + 3y^{2}bx + 6yzbx + 3z^{2}bx + y^{3}b + 3y^{2}zb + 3yz^{2}b + z^{3}b + cx^{2} + 2ycx + 2zcx + y^{2}c + 2yzc + z^{2}c + dx + yd + zd + f\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ax^{4} + 4ayx^{3} + 4azx^{3} + 6ay^{2}x^{2} + 12ayzx^{2} + 6az^{2}x^{2} + 4ay^{3}x + 12ay^{2}zx + 12ayz^{2}x + 4az^{3}x + 4ay^{3}z + 6ay^{2}z^{2} + 4ayz^{3} + ay^{4} + az^{4} + bx^{3} + 3ybx^{2} + 3zbx^{2} + 3y^{2}bx + 6yzbx + 3z^{2}bx + y^{3}b + 3y^{2}zb + 3yz^{2}b + z^{3}b + cx^{2} + 2ycx + 2zcx + y^{2}c + 2yzc + z^{2}c + dx + yd + zd + f\right)}{dx}\\=&a*4x^{3} + 4ay*3x^{2} + 4az*3x^{2} + 6ay^{2}*2x + 12ayz*2x + 6az^{2}*2x + 4ay^{3} + 12ay^{2}z + 12ayz^{2} + 4az^{3} + 0 + 0 + 0 + 0 + 0 + b*3x^{2} + 3yb*2x + 3zb*2x + 3y^{2}b + 6yzb + 3z^{2}b + 0 + 0 + 0 + 0 + c*2x + 2yc + 2zc + 0 + 0 + 0 + d + 0 + 0 + 0\\=&4ax^{3} + 12ayx^{2} + 12azx^{2} + 12ay^{2}x + 24ayzx + 12az^{2}x + 12ay^{2}z + 12ayz^{2} + 4ay^{3} + 4az^{3} + 3bx^{2} + 6ybx + 6zbx + 3y^{2}b + 6yzb + 3z^{2}b + 2cx + 2yc + 2zc + d\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 4ax^{3} + 12ayx^{2} + 12azx^{2} + 12ay^{2}x + 24ayzx + 12az^{2}x + 12ay^{2}z + 12ayz^{2} + 4ay^{3} + 4az^{3} + 3bx^{2} + 6ybx + 6zbx + 3y^{2}b + 6yzb + 3z^{2}b + 2cx + 2yc + 2zc + d\right)}{dx}\\=&4a*3x^{2} + 12ay*2x + 12az*2x + 12ay^{2} + 24ayz + 12az^{2} + 0 + 0 + 0 + 0 + 3b*2x + 6yb + 6zb + 0 + 0 + 0 + 2c + 0 + 0 + 0\\=&12ax^{2} + 24ayx + 24azx + 24ayz + 12ay^{2} + 12az^{2} + 6bx + 6yb + 6zb + 2c\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 12ax^{2} + 24ayx + 24azx + 24ayz + 12ay^{2} + 12az^{2} + 6bx + 6yb + 6zb + 2c\right)}{dx}\\=&12a*2x + 24ay + 24az + 0 + 0 + 0 + 6b + 0 + 0 + 0\\=&24ax + 24ay + 24az + 6b\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 24ax + 24ay + 24az + 6b\right)}{dx}\\=&24a + 0 + 0 + 0\\=&24a\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!