数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 3 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/3】求函数arcsin(sin(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(sin(x))\right)}{dx}\\=&(\frac{(cos(x))}{((1 - (sin(x))^{2})^{\frac{1}{2}})})\\=&\frac{cos(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{cos(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}})cos(x) + \frac{-sin(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{sin(x)cos^{2}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{sin(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{sin(x)cos^{2}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{sin(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}})sin(x)cos^{2}(x) + \frac{cos(x)cos^{2}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} + \frac{sin(x)*-2cos(x)sin(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - (\frac{\frac{-1}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}})sin(x) - \frac{cos(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{3sin^{2}(x)cos^{3}(x)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}} + \frac{cos^{3}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{3sin^{2}(x)cos(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{cos(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3sin^{2}(x)cos^{3}(x)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}} + \frac{cos^{3}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{3sin^{2}(x)cos(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{cos(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&3(\frac{\frac{-5}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{7}{2}}})sin^{2}(x)cos^{3}(x) + \frac{3*2sin(x)cos(x)cos^{3}(x)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}} + \frac{3sin^{2}(x)*-3cos^{2}(x)sin(x)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}})cos^{3}(x) + \frac{-3cos^{2}(x)sin(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - 3(\frac{\frac{-3}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}})sin^{2}(x)cos(x) - \frac{3*2sin(x)cos(x)cos(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - \frac{3sin^{2}(x)*-sin(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} - (\frac{\frac{-1}{2}(-2sin(x)cos(x) + 0)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}})cos(x) - \frac{-sin(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{15sin^{3}(x)cos^{4}(x)}{(-sin^{2}(x) + 1)^{\frac{7}{2}}} + \frac{9sin(x)cos^{4}(x)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}} - \frac{18sin^{3}(x)cos^{2}(x)}{(-sin^{2}(x) + 1)^{\frac{5}{2}}} - \frac{10sin(x)cos^{2}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} + \frac{3sin^{3}(x)}{(-sin^{2}(x) + 1)^{\frac{3}{2}}} + \frac{sin(x)}{(-sin^{2}(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}【2/3】求函数arccos(cos(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arccos(cos(x))\right)}{dx}\\=&(\frac{-(-sin(x))}{((1 - (cos(x))^{2})^{\frac{1}{2}})})\\=&\frac{sin(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sin(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}})sin(x) + \frac{cos(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{-sin^{2}(x)cos(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + \frac{cos(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-sin^{2}(x)cos(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + \frac{cos(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-3}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}})sin^{2}(x)cos(x) - \frac{2sin(x)cos(x)cos(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} - \frac{sin^{2}(x)*-sin(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + (\frac{\frac{-1}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}})cos(x) + \frac{-sin(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{3sin^{3}(x)cos^{2}(x)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}} - \frac{3sin(x)cos^{2}(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + \frac{sin^{3}(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} - \frac{sin(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3sin^{3}(x)cos^{2}(x)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}} - \frac{3sin(x)cos^{2}(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + \frac{sin^{3}(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} - \frac{sin(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&3(\frac{\frac{-5}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{7}{2}}})sin^{3}(x)cos^{2}(x) + \frac{3*3sin^{2}(x)cos(x)cos^{2}(x)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}} + \frac{3sin^{3}(x)*-2cos(x)sin(x)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}} - 3(\frac{\frac{-3}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}})sin(x)cos^{2}(x) - \frac{3cos(x)cos^{2}(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} - \frac{3sin(x)*-2cos(x)sin(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + (\frac{\frac{-3}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}})sin^{3}(x) + \frac{3sin^{2}(x)cos(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} - (\frac{\frac{-1}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}})sin(x) - \frac{cos(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{-15sin^{4}(x)cos^{3}(x)}{(-cos^{2}(x) + 1)^{\frac{7}{2}}} + \frac{18sin^{2}(x)cos^{3}(x)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}} - \frac{9sin^{4}(x)cos(x)}{(-cos^{2}(x) + 1)^{\frac{5}{2}}} - \frac{3cos^{3}(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} + \frac{10sin^{2}(x)cos(x)}{(-cos^{2}(x) + 1)^{\frac{3}{2}}} - \frac{cos(x)}{(-cos^{2}(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}【3/3】求函数arctan(tan(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(tan(x))\right)}{dx}\\=&(\frac{(sec^{2}(x)(1))}{(1 + (tan(x))^{2})})\\=&\frac{sec^{2}(x)}{(tan^{2}(x) + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sec^{2}(x)}{(tan^{2}(x) + 1)}\right)}{dx}\\=&(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})sec^{2}(x) + \frac{2sec^{2}(x)tan(x)}{(tan^{2}(x) + 1)}\\=&\frac{-2tan(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} + \frac{2tan(x)sec^{2}(x)}{(tan^{2}(x) + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2tan(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} + \frac{2tan(x)sec^{2}(x)}{(tan^{2}(x) + 1)}\right)}{dx}\\=&-2(\frac{-2(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{3}})tan(x)sec^{4}(x) - \frac{2sec^{2}(x)(1)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} - \frac{2tan(x)*4sec^{4}(x)tan(x)}{(tan^{2}(x) + 1)^{2}} + 2(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})tan(x)sec^{2}(x) + \frac{2sec^{2}(x)(1)sec^{2}(x)}{(tan^{2}(x) + 1)} + \frac{2tan(x)*2sec^{2}(x)tan(x)}{(tan^{2}(x) + 1)}\\=&\frac{8tan^{2}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}} - \frac{2sec^{6}(x)}{(tan^{2}(x) + 1)^{2}} - \frac{12tan^{2}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} + \frac{2sec^{4}(x)}{(tan^{2}(x) + 1)} + \frac{4tan^{2}(x)sec^{2}(x)}{(tan^{2}(x) + 1)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{8tan^{2}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}} - \frac{2sec^{6}(x)}{(tan^{2}(x) + 1)^{2}} - \frac{12tan^{2}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} + \frac{2sec^{4}(x)}{(tan^{2}(x) + 1)} + \frac{4tan^{2}(x)sec^{2}(x)}{(tan^{2}(x) + 1)}\right)}{dx}\\=&8(\frac{-3(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{4}})tan^{2}(x)sec^{6}(x) + \frac{8*2tan(x)sec^{2}(x)(1)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}} + \frac{8tan^{2}(x)*6sec^{6}(x)tan(x)}{(tan^{2}(x) + 1)^{3}} - 2(\frac{-2(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{3}})sec^{6}(x) - \frac{2*6sec^{6}(x)tan(x)}{(tan^{2}(x) + 1)^{2}} - 12(\frac{-2(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{3}})tan^{2}(x)sec^{4}(x) - \frac{12*2tan(x)sec^{2}(x)(1)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} - \frac{12tan^{2}(x)*4sec^{4}(x)tan(x)}{(tan^{2}(x) + 1)^{2}} + 2(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})sec^{4}(x) + \frac{2*4sec^{4}(x)tan(x)}{(tan^{2}(x) + 1)} + 4(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})tan^{2}(x)sec^{2}(x) + \frac{4*2tan(x)sec^{2}(x)(1)sec^{2}(x)}{(tan^{2}(x) + 1)} + \frac{4tan^{2}(x)*2sec^{2}(x)tan(x)}{(tan^{2}(x) + 1)}\\=&\frac{-48tan^{3}(x)sec^{8}(x)}{(tan^{2}(x) + 1)^{4}} + \frac{24tan(x)sec^{8}(x)}{(tan^{2}(x) + 1)^{3}} + \frac{96tan^{3}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}} - \frac{40tan(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{2}} + \frac{16tan(x)sec^{4}(x)}{(tan^{2}(x) + 1)} - \frac{56tan^{3}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}} + \frac{8tan^{3}(x)sec^{2}(x)}{(tan^{2}(x) + 1)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。