本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数lg(4 - x) - lg(4 + x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = lg(-x + 4) - lg(x + 4)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( lg(-x + 4) - lg(x + 4)\right)}{dx}\\=&\frac{(-1 + 0)}{ln{10}(-x + 4)} - \frac{(1 + 0)}{ln{10}(x + 4)}\\=&\frac{-1}{(-x + 4)ln{10}} - \frac{1}{(x + 4)ln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-1}{(-x + 4)ln{10}} - \frac{1}{(x + 4)ln{10}}\right)}{dx}\\=&\frac{-(\frac{-(-1 + 0)}{(-x + 4)^{2}})}{ln{10}} - \frac{-0}{(-x + 4)ln^{2}{10}} - \frac{(\frac{-(1 + 0)}{(x + 4)^{2}})}{ln{10}} - \frac{-0}{(x + 4)ln^{2}{10}}\\=&\frac{-1}{(-x + 4)^{2}ln{10}} + \frac{1}{(x + 4)^{2}ln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-1}{(-x + 4)^{2}ln{10}} + \frac{1}{(x + 4)^{2}ln{10}}\right)}{dx}\\=&\frac{-(\frac{-2(-1 + 0)}{(-x + 4)^{3}})}{ln{10}} - \frac{-0}{(-x + 4)^{2}ln^{2}{10}} + \frac{(\frac{-2(1 + 0)}{(x + 4)^{3}})}{ln{10}} + \frac{-0}{(x + 4)^{2}ln^{2}{10}}\\=&\frac{-2}{(-x + 4)^{3}ln{10}} - \frac{2}{(x + 4)^{3}ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-2}{(-x + 4)^{3}ln{10}} - \frac{2}{(x + 4)^{3}ln{10}}\right)}{dx}\\=&\frac{-2(\frac{-3(-1 + 0)}{(-x + 4)^{4}})}{ln{10}} - \frac{2*-0}{(-x + 4)^{3}ln^{2}{10}} - \frac{2(\frac{-3(1 + 0)}{(x + 4)^{4}})}{ln{10}} - \frac{2*-0}{(x + 4)^{3}ln^{2}{10}}\\=&\frac{-6}{(-x + 4)^{4}ln{10}} + \frac{6}{(x + 4)^{4}ln{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!