本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{x(axx + (4a + 1)x + 4a + 3)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\right)}{dx}\\=&e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3)\\=&3ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 4ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 3e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 3ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 4ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 3e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\right)}{dx}\\=&3a*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 3ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 8ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 2e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 4ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 3e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3)\\=&70axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 9a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 48a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 88a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 50ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 32ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 64a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 11e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 4x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 16a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 70axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 9a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 48a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 88a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 50ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 32ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 64a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 11e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 4x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 16a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\right)}{dx}\\=&70ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 70axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 9a^{2}*4x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 9a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 48a^{2}*3x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 48a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 12a*3x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 88a^{2}*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 88a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 50a*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 50ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 32ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 64a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 64a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 11e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 4*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 4x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 12e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 16a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3)\\=&210ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1014a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1392a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 471ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 936a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 510axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 27a^{3}x^{6}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 216a^{3}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 54a^{2}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 684a^{3}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 369a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1088a^{3}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 36ax^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 204ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 912a^{3}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 240a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 384a^{3}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 66xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 45e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 36x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 64a^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 210ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1014a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1392a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 471ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 936a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 510axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 27a^{3}x^{6}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 216a^{3}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 54a^{2}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 684a^{3}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 369a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1088a^{3}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 36ax^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 204ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 912a^{3}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 240a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 384a^{3}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 66xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 45e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 36x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 64a^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\right)}{dx}\\=&210ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 1014a^{2}*3x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1014a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 1392a^{2}*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1392a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 471a*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 471ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 936a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 936a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 510ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 510axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 27a^{3}*6x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 27a^{3}x^{6}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 216a^{3}*5x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 216a^{3}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 54a^{2}*5x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 54a^{2}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 684a^{3}*4x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 684a^{3}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 369a^{2}*4x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 369a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 1088a^{3}*3x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1088a^{3}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 36a*4x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 36ax^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 204a*3x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 204ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 912a^{3}*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 912a^{3}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 240a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 384a^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 384a^{3}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 66e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 66xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 45e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 8*3x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 36*2xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 36x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3) + 64a^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}(a*3x^{2} + 4a*2x + 2x + 4a + 3)\\=&15684a^{2}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 9792a^{2}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 3516axe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2496a^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1320ae^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8388a^{3}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 19072a^{3}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 6594a^{2}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 25824a^{3}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 13416a^{2}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 20544a^{3}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2216ax^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 3852ax^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 8768a^{3}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 81a^{4}x^{8}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 864a^{4}x^{7}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 216a^{3}x^{7}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 3888a^{4}x^{6}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2052a^{3}x^{6}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 9600a^{4}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 216a^{2}x^{6}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1800a^{2}x^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 14176a^{4}x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 12800a^{4}x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 96ax^{5}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 688ax^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 6912a^{4}x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 1536a^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 2048a^{4}xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 201e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 264x^{2}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 360xe^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 16x^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 96x^{3}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x} + 256a^{4}e^{ax^{3} + 4ax^{2} + x^{2} + 4ax + 3x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!