数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{2} + \frac{lg({tan(x)}^{2} + 1)}{4} - log_{5}^{tan(x) + 1} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}x + \frac{1}{4}lg(tan^{2}(x) + 1) - log_{5}^{tan(x) + 1}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}x + \frac{1}{4}lg(tan^{2}(x) + 1) - log_{5}^{tan(x) + 1}\right)}{dx}\\=&\frac{1}{2} + \frac{\frac{1}{4}(2tan(x)sec^{2}(x)(1) + 0)}{ln{10}(tan^{2}(x) + 1)} - (\frac{(\frac{(sec^{2}(x)(1) + 0)}{(tan(x) + 1)} - \frac{(0)log_{5}^{tan(x) + 1}}{(5)})}{(ln(5))})\\=&\frac{tan(x)sec^{2}(x)}{2(tan^{2}(x) + 1)ln{10}} - \frac{sec^{2}(x)}{(tan(x) + 1)ln(5)} + \frac{1}{2}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{tan(x)sec^{2}(x)}{2(tan^{2}(x) + 1)ln{10}} - \frac{sec^{2}(x)}{(tan(x) + 1)ln(5)} + \frac{1}{2}\right)}{dx}\\=&\frac{(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})tan(x)sec^{2}(x)}{2ln{10}} + \frac{-0tan(x)sec^{2}(x)}{2(tan^{2}(x) + 1)ln^{2}{10}} + \frac{sec^{2}(x)(1)sec^{2}(x)}{2(tan^{2}(x) + 1)ln{10}} + \frac{tan(x)*2sec^{2}(x)tan(x)}{2(tan^{2}(x) + 1)ln{10}} - \frac{(\frac{-(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{2}})sec^{2}(x)}{ln(5)} - \frac{-0sec^{2}(x)}{(tan(x) + 1)ln^{2}(5)(5)} - \frac{2sec^{2}(x)tan(x)}{(tan(x) + 1)ln(5)} + 0\\=&\frac{-tan^{2}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{sec^{4}(x)}{2(tan^{2}(x) + 1)ln{10}} + \frac{tan^{2}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{sec^{4}(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{2tan(x)sec^{2}(x)}{(tan(x) + 1)ln(5)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-tan^{2}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{sec^{4}(x)}{2(tan^{2}(x) + 1)ln{10}} + \frac{tan^{2}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{sec^{4}(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{2tan(x)sec^{2}(x)}{(tan(x) + 1)ln(5)}\right)}{dx}\\=&\frac{-(\frac{-2(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{3}})tan^{2}(x)sec^{4}(x)}{ln{10}} - \frac{-0tan^{2}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln^{2}{10}} - \frac{2tan(x)sec^{2}(x)(1)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{tan^{2}(x)*4sec^{4}(x)tan(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})sec^{4}(x)}{2ln{10}} + \frac{-0sec^{4}(x)}{2(tan^{2}(x) + 1)ln^{2}{10}} + \frac{4sec^{4}(x)tan(x)}{2(tan^{2}(x) + 1)ln{10}} + \frac{(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})tan^{2}(x)sec^{2}(x)}{ln{10}} + \frac{-0tan^{2}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln^{2}{10}} + \frac{2tan(x)sec^{2}(x)(1)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{tan^{2}(x)*2sec^{2}(x)tan(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{(\frac{-2(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{3}})sec^{4}(x)}{ln(5)} + \frac{-0sec^{4}(x)}{(tan(x) + 1)^{2}ln^{2}(5)(5)} + \frac{4sec^{4}(x)tan(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{2(\frac{-(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{2}})tan(x)sec^{2}(x)}{ln(5)} - \frac{2*-0tan(x)sec^{2}(x)}{(tan(x) + 1)ln^{2}(5)(5)} - \frac{2sec^{2}(x)(1)sec^{2}(x)}{(tan(x) + 1)ln(5)} - \frac{2tan(x)*2sec^{2}(x)tan(x)}{(tan(x) + 1)ln(5)}\\=&\frac{4tan^{3}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}ln{10}} - \frac{3tan(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{6tan^{3}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{4tan(x)sec^{4}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{2tan^{3}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} - \frac{2sec^{6}(x)}{(tan(x) + 1)^{3}ln(5)} + \frac{6tan(x)sec^{4}(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{2sec^{4}(x)}{(tan(x) + 1)ln(5)} - \frac{4tan^{2}(x)sec^{2}(x)}{(tan(x) + 1)ln(5)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{4tan^{3}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}ln{10}} - \frac{3tan(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{6tan^{3}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{4tan(x)sec^{4}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{2tan^{3}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} - \frac{2sec^{6}(x)}{(tan(x) + 1)^{3}ln(5)} + \frac{6tan(x)sec^{4}(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{2sec^{4}(x)}{(tan(x) + 1)ln(5)} - \frac{4tan^{2}(x)sec^{2}(x)}{(tan(x) + 1)ln(5)}\right)}{dx}\\=&\frac{4(\frac{-3(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{4}})tan^{3}(x)sec^{6}(x)}{ln{10}} + \frac{4*-0tan^{3}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}ln^{2}{10}} + \frac{4*3tan^{2}(x)sec^{2}(x)(1)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}ln{10}} + \frac{4tan^{3}(x)*6sec^{6}(x)tan(x)}{(tan^{2}(x) + 1)^{3}ln{10}} - \frac{3(\frac{-2(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{3}})tan(x)sec^{6}(x)}{ln{10}} - \frac{3*-0tan(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{2}ln^{2}{10}} - \frac{3sec^{2}(x)(1)sec^{6}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{3tan(x)*6sec^{6}(x)tan(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{6(\frac{-2(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{3}})tan^{3}(x)sec^{4}(x)}{ln{10}} - \frac{6*-0tan^{3}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln^{2}{10}} - \frac{6*3tan^{2}(x)sec^{2}(x)(1)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{6tan^{3}(x)*4sec^{4}(x)tan(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{4(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})tan(x)sec^{4}(x)}{ln{10}} + \frac{4*-0tan(x)sec^{4}(x)}{(tan^{2}(x) + 1)ln^{2}{10}} + \frac{4sec^{2}(x)(1)sec^{4}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{4tan(x)*4sec^{4}(x)tan(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{2(\frac{-(2tan(x)sec^{2}(x)(1) + 0)}{(tan^{2}(x) + 1)^{2}})tan^{3}(x)sec^{2}(x)}{ln{10}} + \frac{2*-0tan^{3}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln^{2}{10}} + \frac{2*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{2tan^{3}(x)*2sec^{2}(x)tan(x)}{(tan^{2}(x) + 1)ln{10}} - \frac{2(\frac{-3(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{4}})sec^{6}(x)}{ln(5)} - \frac{2*-0sec^{6}(x)}{(tan(x) + 1)^{3}ln^{2}(5)(5)} - \frac{2*6sec^{6}(x)tan(x)}{(tan(x) + 1)^{3}ln(5)} + \frac{6(\frac{-2(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{3}})tan(x)sec^{4}(x)}{ln(5)} + \frac{6*-0tan(x)sec^{4}(x)}{(tan(x) + 1)^{2}ln^{2}(5)(5)} + \frac{6sec^{2}(x)(1)sec^{4}(x)}{(tan(x) + 1)^{2}ln(5)} + \frac{6tan(x)*4sec^{4}(x)tan(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{2(\frac{-(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{2}})sec^{4}(x)}{ln(5)} - \frac{2*-0sec^{4}(x)}{(tan(x) + 1)ln^{2}(5)(5)} - \frac{2*4sec^{4}(x)tan(x)}{(tan(x) + 1)ln(5)} - \frac{4(\frac{-(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{2}})tan^{2}(x)sec^{2}(x)}{ln(5)} - \frac{4*-0tan^{2}(x)sec^{2}(x)}{(tan(x) + 1)ln^{2}(5)(5)} - \frac{4*2tan(x)sec^{2}(x)(1)sec^{2}(x)}{(tan(x) + 1)ln(5)} - \frac{4tan^{2}(x)*2sec^{2}(x)tan(x)}{(tan(x) + 1)ln(5)}\\=&\frac{-24tan^{4}(x)sec^{8}(x)}{(tan^{2}(x) + 1)^{4}ln{10}} + \frac{24tan^{2}(x)sec^{8}(x)}{(tan^{2}(x) + 1)^{3}ln{10}} + \frac{48tan^{4}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{3}ln{10}} - \frac{44tan^{2}(x)sec^{6}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} - \frac{3sec^{8}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{22tan^{2}(x)sec^{4}(x)}{(tan^{2}(x) + 1)ln{10}} - \frac{16tan(x)sec^{4}(x)}{(tan(x) + 1)ln(5)} - \frac{28tan^{4}(x)sec^{4}(x)}{(tan^{2}(x) + 1)^{2}ln{10}} + \frac{4sec^{6}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{4tan^{4}(x)sec^{2}(x)}{(tan^{2}(x) + 1)ln{10}} + \frac{6sec^{8}(x)}{(tan(x) + 1)^{4}ln(5)} - \frac{24tan(x)sec^{6}(x)}{(tan(x) + 1)^{3}ln(5)} + \frac{8sec^{6}(x)}{(tan(x) + 1)^{2}ln(5)} + \frac{28tan^{2}(x)sec^{4}(x)}{(tan(x) + 1)^{2}ln(5)} - \frac{8tan^{3}(x)sec^{2}(x)}{(tan(x) + 1)ln(5)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。