数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{x}^{(\frac{a}{x})} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{(\frac{a}{x})}\right)}{dx}\\=&({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))\\=&\frac{-a{x}^{(\frac{a}{x})}ln(x)}{x^{2}} + \frac{a{x}^{(\frac{a}{x})}}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-a{x}^{(\frac{a}{x})}ln(x)}{x^{2}} + \frac{a{x}^{(\frac{a}{x})}}{x^{2}}\right)}{dx}\\=&\frac{-a*-2{x}^{(\frac{a}{x})}ln(x)}{x^{3}} - \frac{a({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln(x)}{x^{2}} - \frac{a{x}^{(\frac{a}{x})}}{x^{2}(x)} + \frac{a*-2{x}^{(\frac{a}{x})}}{x^{3}} + \frac{a({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))}{x^{2}}\\=&\frac{2a{x}^{(\frac{a}{x})}ln(x)}{x^{3}} + \frac{a^{2}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{4}} - \frac{2a^{2}{x}^{(\frac{a}{x})}ln(x)}{x^{4}} - \frac{3a{x}^{(\frac{a}{x})}}{x^{3}} + \frac{a^{2}{x}^{(\frac{a}{x})}}{x^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2a{x}^{(\frac{a}{x})}ln(x)}{x^{3}} + \frac{a^{2}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{4}} - \frac{2a^{2}{x}^{(\frac{a}{x})}ln(x)}{x^{4}} - \frac{3a{x}^{(\frac{a}{x})}}{x^{3}} + \frac{a^{2}{x}^{(\frac{a}{x})}}{x^{4}}\right)}{dx}\\=&\frac{2a*-3{x}^{(\frac{a}{x})}ln(x)}{x^{4}} + \frac{2a({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln(x)}{x^{3}} + \frac{2a{x}^{(\frac{a}{x})}}{x^{3}(x)} + \frac{a^{2}*-4{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{5}} + \frac{a^{2}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln^{2}(x)}{x^{4}} + \frac{a^{2}{x}^{(\frac{a}{x})}*2ln(x)}{x^{4}(x)} - \frac{2a^{2}*-4{x}^{(\frac{a}{x})}ln(x)}{x^{5}} - \frac{2a^{2}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln(x)}{x^{4}} - \frac{2a^{2}{x}^{(\frac{a}{x})}}{x^{4}(x)} - \frac{3a*-3{x}^{(\frac{a}{x})}}{x^{4}} - \frac{3a({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))}{x^{3}} + \frac{a^{2}*-4{x}^{(\frac{a}{x})}}{x^{5}} + \frac{a^{2}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))}{x^{4}}\\=&\frac{-6a{x}^{(\frac{a}{x})}ln(x)}{x^{4}} - \frac{6a^{2}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{5}} - \frac{a^{3}{x}^{(\frac{a}{x})}ln^{3}(x)}{x^{6}} + \frac{15a^{2}{x}^{(\frac{a}{x})}ln(x)}{x^{5}} + \frac{3a^{3}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{6}} - \frac{3a^{3}{x}^{(\frac{a}{x})}ln(x)}{x^{6}} + \frac{11a{x}^{(\frac{a}{x})}}{x^{4}} - \frac{9a^{2}{x}^{(\frac{a}{x})}}{x^{5}} + \frac{a^{3}{x}^{(\frac{a}{x})}}{x^{6}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6a{x}^{(\frac{a}{x})}ln(x)}{x^{4}} - \frac{6a^{2}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{5}} - \frac{a^{3}{x}^{(\frac{a}{x})}ln^{3}(x)}{x^{6}} + \frac{15a^{2}{x}^{(\frac{a}{x})}ln(x)}{x^{5}} + \frac{3a^{3}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{6}} - \frac{3a^{3}{x}^{(\frac{a}{x})}ln(x)}{x^{6}} + \frac{11a{x}^{(\frac{a}{x})}}{x^{4}} - \frac{9a^{2}{x}^{(\frac{a}{x})}}{x^{5}} + \frac{a^{3}{x}^{(\frac{a}{x})}}{x^{6}}\right)}{dx}\\=&\frac{-6a*-4{x}^{(\frac{a}{x})}ln(x)}{x^{5}} - \frac{6a({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln(x)}{x^{4}} - \frac{6a{x}^{(\frac{a}{x})}}{x^{4}(x)} - \frac{6a^{2}*-5{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{6}} - \frac{6a^{2}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln^{2}(x)}{x^{5}} - \frac{6a^{2}{x}^{(\frac{a}{x})}*2ln(x)}{x^{5}(x)} - \frac{a^{3}*-6{x}^{(\frac{a}{x})}ln^{3}(x)}{x^{7}} - \frac{a^{3}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln^{3}(x)}{x^{6}} - \frac{a^{3}{x}^{(\frac{a}{x})}*3ln^{2}(x)}{x^{6}(x)} + \frac{15a^{2}*-5{x}^{(\frac{a}{x})}ln(x)}{x^{6}} + \frac{15a^{2}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln(x)}{x^{5}} + \frac{15a^{2}{x}^{(\frac{a}{x})}}{x^{5}(x)} + \frac{3a^{3}*-6{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{7}} + \frac{3a^{3}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln^{2}(x)}{x^{6}} + \frac{3a^{3}{x}^{(\frac{a}{x})}*2ln(x)}{x^{6}(x)} - \frac{3a^{3}*-6{x}^{(\frac{a}{x})}ln(x)}{x^{7}} - \frac{3a^{3}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))ln(x)}{x^{6}} - \frac{3a^{3}{x}^{(\frac{a}{x})}}{x^{6}(x)} + \frac{11a*-4{x}^{(\frac{a}{x})}}{x^{5}} + \frac{11a({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))}{x^{4}} - \frac{9a^{2}*-5{x}^{(\frac{a}{x})}}{x^{6}} - \frac{9a^{2}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))}{x^{5}} + \frac{a^{3}*-6{x}^{(\frac{a}{x})}}{x^{7}} + \frac{a^{3}({x}^{(\frac{a}{x})}((\frac{a*-1}{x^{2}})ln(x) + \frac{(\frac{a}{x})(1)}{(x)}))}{x^{6}}\\=&\frac{24a{x}^{(\frac{a}{x})}ln(x)}{x^{5}} + \frac{36a^{2}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{6}} + \frac{12a^{3}{x}^{(\frac{a}{x})}ln^{3}(x)}{x^{7}} - \frac{104a^{2}{x}^{(\frac{a}{x})}ln(x)}{x^{6}} + \frac{a^{4}{x}^{(\frac{a}{x})}ln^{4}(x)}{x^{8}} - \frac{42a^{3}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{7}} - \frac{4a^{4}{x}^{(\frac{a}{x})}ln^{3}(x)}{x^{8}} + \frac{6a^{4}{x}^{(\frac{a}{x})}ln^{2}(x)}{x^{8}} + \frac{48a^{3}{x}^{(\frac{a}{x})}ln(x)}{x^{7}} - \frac{4a^{4}{x}^{(\frac{a}{x})}ln(x)}{x^{8}} - \frac{50a{x}^{(\frac{a}{x})}}{x^{5}} + \frac{71a^{2}{x}^{(\frac{a}{x})}}{x^{6}} - \frac{18a^{3}{x}^{(\frac{a}{x})}}{x^{7}} + \frac{a^{4}{x}^{(\frac{a}{x})}}{x^{8}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。