本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{(a - x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{(a - x)}\right)}{dx}\\=&({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))\\=&-{x}^{(a - x)}ln(x) + \frac{a{x}^{(a - x)}}{x} - {x}^{(a - x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -{x}^{(a - x)}ln(x) + \frac{a{x}^{(a - x)}}{x} - {x}^{(a - x)}\right)}{dx}\\=&-({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x) - \frac{{x}^{(a - x)}}{(x)} + \frac{a*-{x}^{(a - x)}}{x^{2}} + \frac{a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x} - ({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))\\=&{x}^{(a - x)}ln^{2}(x) - \frac{2a{x}^{(a - x)}ln(x)}{x} + 2{x}^{(a - x)}ln(x) - \frac{{x}^{(a - x)}}{x} - \frac{a{x}^{(a - x)}}{x^{2}} + \frac{a^{2}{x}^{(a - x)}}{x^{2}} - \frac{2a{x}^{(a - x)}}{x} + {x}^{(a - x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {x}^{(a - x)}ln^{2}(x) - \frac{2a{x}^{(a - x)}ln(x)}{x} + 2{x}^{(a - x)}ln(x) - \frac{{x}^{(a - x)}}{x} - \frac{a{x}^{(a - x)}}{x^{2}} + \frac{a^{2}{x}^{(a - x)}}{x^{2}} - \frac{2a{x}^{(a - x)}}{x} + {x}^{(a - x)}\right)}{dx}\\=&({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln^{2}(x) + \frac{{x}^{(a - x)}*2ln(x)}{(x)} - \frac{2a*-{x}^{(a - x)}ln(x)}{x^{2}} - \frac{2a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x)}{x} - \frac{2a{x}^{(a - x)}}{x(x)} + 2({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x) + \frac{2{x}^{(a - x)}}{(x)} - \frac{-{x}^{(a - x)}}{x^{2}} - \frac{({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x} - \frac{a*-2{x}^{(a - x)}}{x^{3}} - \frac{a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{2}} + \frac{a^{2}*-2{x}^{(a - x)}}{x^{3}} + \frac{a^{2}({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{2}} - \frac{2a*-{x}^{(a - x)}}{x^{2}} - \frac{2a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x} + ({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))\\=&-{x}^{(a - x)}ln^{3}(x) + \frac{3a{x}^{(a - x)}ln^{2}(x)}{x} - 3{x}^{(a - x)}ln^{2}(x) + \frac{3{x}^{(a - x)}ln(x)}{x} + \frac{3a{x}^{(a - x)}ln(x)}{x^{2}} - \frac{3a^{2}{x}^{(a - x)}ln(x)}{x^{2}} + \frac{6a{x}^{(a - x)}ln(x)}{x} - 3{x}^{(a - x)}ln(x) + \frac{3{x}^{(a - x)}}{x} + \frac{{x}^{(a - x)}}{x^{2}} + \frac{2a{x}^{(a - x)}}{x^{3}} - \frac{3a^{2}{x}^{(a - x)}}{x^{3}} + \frac{a^{3}{x}^{(a - x)}}{x^{3}} - \frac{3a^{2}{x}^{(a - x)}}{x^{2}} + \frac{3a{x}^{(a - x)}}{x} - {x}^{(a - x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -{x}^{(a - x)}ln^{3}(x) + \frac{3a{x}^{(a - x)}ln^{2}(x)}{x} - 3{x}^{(a - x)}ln^{2}(x) + \frac{3{x}^{(a - x)}ln(x)}{x} + \frac{3a{x}^{(a - x)}ln(x)}{x^{2}} - \frac{3a^{2}{x}^{(a - x)}ln(x)}{x^{2}} + \frac{6a{x}^{(a - x)}ln(x)}{x} - 3{x}^{(a - x)}ln(x) + \frac{3{x}^{(a - x)}}{x} + \frac{{x}^{(a - x)}}{x^{2}} + \frac{2a{x}^{(a - x)}}{x^{3}} - \frac{3a^{2}{x}^{(a - x)}}{x^{3}} + \frac{a^{3}{x}^{(a - x)}}{x^{3}} - \frac{3a^{2}{x}^{(a - x)}}{x^{2}} + \frac{3a{x}^{(a - x)}}{x} - {x}^{(a - x)}\right)}{dx}\\=&-({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln^{3}(x) - \frac{{x}^{(a - x)}*3ln^{2}(x)}{(x)} + \frac{3a*-{x}^{(a - x)}ln^{2}(x)}{x^{2}} + \frac{3a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln^{2}(x)}{x} + \frac{3a{x}^{(a - x)}*2ln(x)}{x(x)} - 3({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln^{2}(x) - \frac{3{x}^{(a - x)}*2ln(x)}{(x)} + \frac{3*-{x}^{(a - x)}ln(x)}{x^{2}} + \frac{3({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x)}{x} + \frac{3{x}^{(a - x)}}{x(x)} + \frac{3a*-2{x}^{(a - x)}ln(x)}{x^{3}} + \frac{3a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x)}{x^{2}} + \frac{3a{x}^{(a - x)}}{x^{2}(x)} - \frac{3a^{2}*-2{x}^{(a - x)}ln(x)}{x^{3}} - \frac{3a^{2}({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x)}{x^{2}} - \frac{3a^{2}{x}^{(a - x)}}{x^{2}(x)} + \frac{6a*-{x}^{(a - x)}ln(x)}{x^{2}} + \frac{6a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x)}{x} + \frac{6a{x}^{(a - x)}}{x(x)} - 3({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))ln(x) - \frac{3{x}^{(a - x)}}{(x)} + \frac{3*-{x}^{(a - x)}}{x^{2}} + \frac{3({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x} + \frac{-2{x}^{(a - x)}}{x^{3}} + \frac{({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{2}} + \frac{2a*-3{x}^{(a - x)}}{x^{4}} + \frac{2a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{3}} - \frac{3a^{2}*-3{x}^{(a - x)}}{x^{4}} - \frac{3a^{2}({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{3}} + \frac{a^{3}*-3{x}^{(a - x)}}{x^{4}} + \frac{a^{3}({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{3}} - \frac{3a^{2}*-2{x}^{(a - x)}}{x^{3}} - \frac{3a^{2}({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x^{2}} + \frac{3a*-{x}^{(a - x)}}{x^{2}} + \frac{3a({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))}{x} - ({x}^{(a - x)}((0 - 1)ln(x) + \frac{(a - x)(1)}{(x)}))\\=&{x}^{(a - x)}ln^{4}(x) - \frac{4a{x}^{(a - x)}ln^{3}(x)}{x} + 4{x}^{(a - x)}ln^{3}(x) - \frac{6{x}^{(a - x)}ln^{2}(x)}{x} - \frac{6a{x}^{(a - x)}ln^{2}(x)}{x^{2}} + \frac{6a^{2}{x}^{(a - x)}ln^{2}(x)}{x^{2}} - \frac{12a{x}^{(a - x)}ln^{2}(x)}{x} + 6{x}^{(a - x)}ln^{2}(x) - \frac{12{x}^{(a - x)}ln(x)}{x} - \frac{4{x}^{(a - x)}ln(x)}{x^{2}} - \frac{8a{x}^{(a - x)}ln(x)}{x^{3}} + \frac{12a^{2}{x}^{(a - x)}ln(x)}{x^{3}} - \frac{4a^{3}{x}^{(a - x)}ln(x)}{x^{3}} + \frac{12a^{2}{x}^{(a - x)}ln(x)}{x^{2}} - \frac{12a{x}^{(a - x)}ln(x)}{x} + \frac{6a^{2}{x}^{(a - x)}}{x^{3}} + \frac{2a{x}^{(a - x)}}{x^{3}} + \frac{6a{x}^{(a - x)}}{x^{2}} + 4{x}^{(a - x)}ln(x) - \frac{6{x}^{(a - x)}}{x} - \frac{2{x}^{(a - x)}}{x^{3}} - \frac{{x}^{(a - x)}}{x^{2}} - \frac{6a{x}^{(a - x)}}{x^{4}} + \frac{11a^{2}{x}^{(a - x)}}{x^{4}} - \frac{6a^{3}{x}^{(a - x)}}{x^{4}} + \frac{a^{4}{x}^{(a - x)}}{x^{4}} - \frac{4a^{3}{x}^{(a - x)}}{x^{3}} + \frac{6a^{2}{x}^{(a - x)}}{x^{2}} - \frac{4a{x}^{(a - x)}}{x} + {x}^{(a - x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!