数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数log_{log_{π}^{x}}^{log_{x}^{2}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{log_{π}^{x}}^{log_{x}^{2}}\right)}{dx}\\=&(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})\\=&\frac{-1}{xln(x)ln(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{xlog(π, x)ln(π)ln(log_{π}^{x})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-1}{xln(x)ln(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{xlog(π, x)ln(π)ln(log_{π}^{x})}\right)}{dx}\\=&\frac{--1}{x^{2}ln(x)ln(log_{π}^{x})} - \frac{-1}{xln^{2}(x)(x)ln(log_{π}^{x})} - \frac{-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{xln(x)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{-log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}log(π, x)ln(π)ln(log_{π}^{x})} - \frac{(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{xln(π)ln(log_{π}^{x})} - \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{xlog(π, x)ln(π)ln(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-0}{xlog(π, x)ln^{2}(π)(π)ln(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{xlog(π, x)ln(π)ln^{2}(log_{π}^{x})(log_{π}^{x})}\\=&\frac{1}{x^{2}ln(x)ln(log_{π}^{x})} + \frac{1}{x^{2}ln^{2}(x)ln(log_{π}^{x})} + \frac{1}{x^{2}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}log(π, x)ln(π)ln(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} + \frac{1}{x^{2}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{1}{x^{2}ln(x)ln(log_{π}^{x})} + \frac{1}{x^{2}ln^{2}(x)ln(log_{π}^{x})} + \frac{1}{x^{2}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}log(π, x)ln(π)ln(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} + \frac{1}{x^{2}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})}\right)}{dx}\\=&\frac{-2}{x^{3}ln(x)ln(log_{π}^{x})} + \frac{-1}{x^{2}ln^{2}(x)(x)ln(log_{π}^{x})} + \frac{-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}ln(x)ln^{2}(log_{π}^{x})(log_{π}^{x})} + \frac{-2}{x^{3}ln^{2}(x)ln(log_{π}^{x})} + \frac{-2}{x^{2}ln^{3}(x)(x)ln(log_{π}^{x})} + \frac{-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}ln^{2}(x)ln^{2}(log_{π}^{x})(log_{π}^{x})} + \frac{-2}{x^{3}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})}{x^{2}ln(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{-1}{x^{2}log(π, x)ln^{2}(x)(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{-0}{x^{2}log(π, x)ln(x)ln^{2}(π)(π)ln^{2}(log_{π}^{x})} + \frac{-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}log(π, x)ln(x)ln(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} + \frac{-2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}log(π, x)ln(π)ln(log_{π}^{x})} + \frac{(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}ln(π)ln(log_{π}^{x})} + \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{2}log(π, x)ln(π)ln(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-0}{x^{2}log(π, x)ln^{2}(π)(π)ln(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}log(π, x)ln(π)ln^{2}(log_{π}^{x})(log_{π}^{x})} + \frac{-2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} + \frac{(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}ln^{2}(π)ln(log_{π}^{x})} + \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-2*0}{x^{2}{\left(log(π, x)^{2}ln^{3}(π)(π)ln(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})(log_{π}^{x})} + \frac{-2}{x^{3}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})}{x^{2}ln(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{-1}{x^{2}log(π, x)ln^{2}(x)(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}log(π, x)ln(x)ln^{3}(log_{π}^{x})(log_{π}^{x})ln(π)} + \frac{-0}{x^{2}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)(π)} + \frac{-2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})}{x^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-2*0}{x^{2}{\left(log(π, x)^{2}ln^{3}(π)(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} + \frac{-2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-2*0}{x^{2}{\left(log(π, x)^{2}ln^{3}(π)(π)ln^{2}(log_{π}^{x})} + \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{2}{\left(log(π, x)^{2}ln^{2}(π)ln^{3}(log_{π}^{x})(log_{π}^{x})}\\=&\frac{-2}{x^{3}ln(x)ln(log_{π}^{x})} - \frac{3}{x^{3}ln^{2}(x)ln(log_{π}^{x})} - \frac{3}{x^{3}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2}{x^{3}ln^{3}(x)ln(log_{π}^{x})} - \frac{2}{x^{3}log(π, x)ln^{2}(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(x)ln^{2}(log_{π}^{x})} - \frac{4}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{3}(log_{π}^{x})ln^{2}(π)} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}log(π, x)ln(π)ln(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} - \frac{3}{x^{3}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln(log_{π}^{x})} - \frac{1}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{5log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{1}{x^{3}log(π, x)ln^{2}(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{2}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{2}(π)ln^{3}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{4log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-2}{x^{3}ln(x)ln(log_{π}^{x})} - \frac{3}{x^{3}ln^{2}(x)ln(log_{π}^{x})} - \frac{3}{x^{3}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2}{x^{3}ln^{3}(x)ln(log_{π}^{x})} - \frac{2}{x^{3}log(π, x)ln^{2}(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(x)ln^{2}(log_{π}^{x})} - \frac{4}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{3}(log_{π}^{x})ln^{2}(π)} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}log(π, x)ln(π)ln(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} - \frac{3}{x^{3}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln(log_{π}^{x})} - \frac{1}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{5log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{1}{x^{3}log(π, x)ln^{2}(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{2}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{2}(π)ln^{3}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{4log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})}\right)}{dx}\\=&\frac{-2*-3}{x^{4}ln(x)ln(log_{π}^{x})} - \frac{2*-1}{x^{3}ln^{2}(x)(x)ln(log_{π}^{x})} - \frac{2*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}ln(x)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{3*-3}{x^{4}ln^{2}(x)ln(log_{π}^{x})} - \frac{3*-2}{x^{3}ln^{3}(x)(x)ln(log_{π}^{x})} - \frac{3*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}ln^{2}(x)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{3*-3}{x^{4}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{3(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})}{x^{3}ln(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{3*-1}{x^{3}log(π, x)ln^{2}(x)(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{3*-0}{x^{3}log(π, x)ln(x)ln^{2}(π)(π)ln^{2}(log_{π}^{x})} - \frac{3*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}log(π, x)ln(x)ln(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{2*-3}{x^{4}ln^{3}(x)ln(log_{π}^{x})} - \frac{2*-3}{x^{3}ln^{4}(x)(x)ln(log_{π}^{x})} - \frac{2*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}ln^{3}(x)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{2*-3}{x^{4}log(π, x)ln^{2}(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})}{x^{3}ln^{2}(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2*-2}{x^{3}log(π, x)ln^{3}(x)(x)ln(π)ln^{2}(log_{π}^{x})} - \frac{2*-0}{x^{3}log(π, x)ln^{2}(x)ln^{2}(π)(π)ln^{2}(log_{π}^{x})} - \frac{2*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}log(π, x)ln^{2}(x)ln(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{2*-3}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln(x)ln^{2}(log_{π}^{x})} - \frac{2(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})}{x^{3}ln^{2}(π)ln(x)ln^{2}(log_{π}^{x})} - \frac{2*-2*0}{x^{3}{\left(log(π, x)^{2}ln^{3}(π)(π)ln(x)ln^{2}(log_{π}^{x})} - \frac{2*-1}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(x)(x)ln^{2}(log_{π}^{x})} - \frac{2*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(x)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{4*-3}{x^{4}{\left(log(π, x)^{2}ln(x)ln^{3}(log_{π}^{x})ln^{2}(π)} - \frac{4(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})}{x^{3}ln(x)ln^{3}(log_{π}^{x})ln^{2}(π)} - \frac{4*-1}{x^{3}{\left(log(π, x)^{2}ln^{2}(x)(x)ln^{3}(log_{π}^{x})ln^{2}(π)} - \frac{4*-3(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{4}(log_{π}^{x})(log_{π}^{x})ln^{2}(π)} - \frac{4*-2*0}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{3}(log_{π}^{x})ln^{3}(π)(π)} - \frac{2*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}log(π, x)ln(π)ln(log_{π}^{x})} - \frac{2(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}ln(π)ln(log_{π}^{x})} - \frac{2(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}log(π, x)ln(π)ln(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}*-0}{x^{3}log(π, x)ln^{2}(π)(π)ln(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}log(π, x)ln(π)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{3*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} - \frac{3(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}ln^{2}(π)ln(log_{π}^{x})} - \frac{3(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}*-2*0}{x^{3}{\left(log(π, x)^{2}ln^{3}(π)(π)ln(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{3*-3}{x^{4}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{3(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})}{x^{3}ln(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{3*-1}{x^{3}log(π, x)ln^{2}(x)(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{3*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}log(π, x)ln(x)ln^{3}(log_{π}^{x})(log_{π}^{x})ln(π)} - \frac{3*-0}{x^{3}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)(π)} - \frac{3*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})}{x^{3}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}*-2*0}{x^{3}{\left(log(π, x)^{2}ln^{3}(π)(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{3*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}*-2*0}{x^{3}{\left(log(π, x)^{2}ln^{3}(π)(π)ln^{2}(log_{π}^{x})} - \frac{3log_{log_{π}^{x}}^{log_{x}^{2}}*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln^{2}(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{2*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln(log_{π}^{x})} - \frac{2(\frac{-3(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{4}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}ln^{3}(π)ln(log_{π}^{x})} - \frac{2(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}*-3*0}{x^{3}{\left(log(π, x)^{3}ln^{4}(π)(π)ln(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})(log_{π}^{x})} - \frac{-3}{x^{4}{\left(log(π, x)^{2}ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)} - \frac{(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})}{x^{3}ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)} - \frac{-1}{x^{3}{\left(log(π, x)^{2}ln^{2}(x)(x)ln^{2}(log_{π}^{x})ln^{2}(π)} - \frac{-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{3}(log_{π}^{x})(log_{π}^{x})ln^{2}(π)} - \frac{-2*0}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{2}(log_{π}^{x})ln^{3}(π)(π)} - \frac{-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}(\frac{-3(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{4}(ln(π))})}{x^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-3*0}{x^{3}{\left(log(π, x)^{3}ln^{4}(π)(π)ln^{2}(log_{π}^{x})} - \frac{log_{log_{π}^{x}}^{log_{x}^{2}}*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{5*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{5(\frac{-3(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{4}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{5(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} - \frac{5log_{log_{π}^{x}}^{log_{x}^{2}}*-3*0}{x^{3}{\left(log(π, x)^{3}ln^{4}(π)(π)ln^{2}(log_{π}^{x})} - \frac{5log_{log_{π}^{x}}^{log_{x}^{2}}*-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})(log_{π}^{x})} - \frac{-3}{x^{4}log(π, x)ln^{2}(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{2}(ln(π))})}{x^{3}ln^{2}(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{-2}{x^{3}log(π, x)ln^{3}(x)(x)ln^{2}(log_{π}^{x})ln(π)} - \frac{-2(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}log(π, x)ln^{2}(x)ln^{3}(log_{π}^{x})(log_{π}^{x})ln(π)} - \frac{-0}{x^{3}log(π, x)ln^{2}(x)ln^{2}(log_{π}^{x})ln^{2}(π)(π)} - \frac{2*-3}{x^{4}{\left(log(π, x)^{2}ln(x)ln^{2}(π)ln^{3}(log_{π}^{x})} - \frac{2(\frac{-2(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{3}(ln(π))})}{x^{3}ln(x)ln^{2}(π)ln^{3}(log_{π}^{x})} - \frac{2*-1}{x^{3}{\left(log(π, x)^{2}ln^{2}(x)(x)ln^{2}(π)ln^{3}(log_{π}^{x})} - \frac{2*-2*0}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{3}(π)(π)ln^{3}(log_{π}^{x})} - \frac{2*-3(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{2}ln(x)ln^{2}(π)ln^{4}(log_{π}^{x})(log_{π}^{x})} - \frac{2*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{2(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}(\frac{-3(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{4}(ln(π))})}{x^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}*-3*0}{x^{3}{\left(log(π, x)^{3}ln^{4}(π)(π)ln^{3}(log_{π}^{x})} - \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}*-3(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{4}(log_{π}^{x})(log_{π}^{x})} - \frac{4*-3log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{4(\frac{-3(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{{\left(log(π, x)^{4}(ln(π))})log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{4(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))}))log_{log_{π}^{x}}^{log_{x}^{2}}}{(log_{π}^{x})})}{(ln(log_{π}^{x}))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} - \frac{4log_{log_{π}^{x}}^{log_{x}^{2}}*-3*0}{x^{3}{\left(log(π, x)^{3}ln^{4}(π)(π)ln^{3}(log_{π}^{x})} - \frac{4log_{log_{π}^{x}}^{log_{x}^{2}}*-3(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})}{x^{3}{\left(log(π, x)^{3}ln^{3}(π)ln^{4}(log_{π}^{x})(log_{π}^{x})}\\=&\frac{6}{x^{4}ln(x)ln(log_{π}^{x})} + \frac{11}{x^{4}ln^{2}(x)ln(log_{π}^{x})} + \frac{11}{x^{4}log(π, x)ln(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{12}{x^{4}ln^{3}(x)ln(log_{π}^{x})} + \frac{12}{x^{4}log(π, x)ln^{2}(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{12}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln(x)ln^{2}(log_{π}^{x})} + \frac{24}{x^{4}{\left(log(π, x)^{2}ln(x)ln^{3}(log_{π}^{x})ln^{2}(π)} + \frac{6}{x^{4}ln^{4}(x)ln(log_{π}^{x})} + \frac{6}{x^{4}log(π, x)ln^{3}(x)ln(π)ln^{2}(log_{π}^{x})} + \frac{3}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(x)ln^{2}(log_{π}^{x})} + \frac{8}{x^{4}{\left(log(π, x)^{2}ln^{2}(x)ln^{3}(log_{π}^{x})ln^{2}(π)} + \frac{6}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln(x)ln^{2}(log_{π}^{x})} + \frac{2}{x^{4}{\left(log(π, x)^{2}ln^{2}(x)ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{4}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})ln(x)} + \frac{12}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln(x)ln^{3}(log_{π}^{x})} + \frac{12}{x^{4}{\left(log(π, x)^{3}ln(x)ln^{3}(π)ln^{4}(log_{π}^{x})} + \frac{6log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}log(π, x)ln(π)ln(log_{π}^{x})} + \frac{11log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln(log_{π}^{x})} + \frac{11}{x^{4}log(π, x)ln(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{11log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{11log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{2}ln^{2}(π)ln^{2}(log_{π}^{x})} + \frac{12log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln(log_{π}^{x})} + \frac{6}{x^{4}{\left(log(π, x)^{2}ln(x)ln^{2}(log_{π}^{x})ln^{2}(π)} + \frac{6log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} + \frac{30log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{2}(log_{π}^{x})} + \frac{6}{x^{4}log(π, x)ln^{2}(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{12}{x^{4}{\left(log(π, x)^{2}ln(x)ln^{2}(π)ln^{3}(log_{π}^{x})} + \frac{12log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} + \frac{24log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{3}ln^{3}(π)ln^{3}(log_{π}^{x})} + \frac{6log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln(log_{π}^{x})} + \frac{2}{x^{4}{\left(log(π, x)^{3}ln(x)ln^{2}(log_{π}^{x})ln^{3}(π)} + \frac{2log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln^{2}(log_{π}^{x})} + \frac{20log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln^{2}(log_{π}^{x})} + \frac{1}{x^{4}{\left(log(π, x)^{2}ln^{2}(x)ln^{2}(log_{π}^{x})ln^{2}(π)} + \frac{2}{x^{4}{\left(log(π, x)^{3}ln(x)ln^{3}(π)ln^{3}(log_{π}^{x})} + \frac{6}{x^{4}{\left(log(π, x)^{3}ln(x)ln^{3}(log_{π}^{x})ln^{3}(π)} + \frac{6log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln^{3}(log_{π}^{x})} + \frac{30log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln^{3}(log_{π}^{x})} + \frac{2}{x^{4}log(π, x)ln^{3}(x)ln^{2}(log_{π}^{x})ln(π)} + \frac{4}{x^{4}{\left(log(π, x)^{2}ln^{2}(x)ln^{2}(π)ln^{3}(log_{π}^{x})} + \frac{12}{x^{4}{\left(log(π, x)^{3}ln(x)ln^{4}(log_{π}^{x})ln^{3}(π)} + \frac{6log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln^{4}(log_{π}^{x})} + \frac{18log_{log_{π}^{x}}^{log_{x}^{2}}}{x^{4}{\left(log(π, x)^{4}ln^{4}(π)ln^{4}(log_{π}^{x})}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。