数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数log_{xln(x)}^{xe^{x}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{xln(x)}^{xe^{x}}\right)}{dx}\\=&(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})\\=&\frac{1}{xln(xln(x))} + \frac{1}{ln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}}{xln(x)ln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}}{xln(xln(x))}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{xln(xln(x))} + \frac{1}{ln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}}{xln(x)ln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}}{xln(xln(x))}\right)}{dx}\\=&\frac{-1}{x^{2}ln(xln(x))} + \frac{-(ln(x) + \frac{x}{(x)})}{xln^{2}(xln(x))(xln(x))} + \frac{-(ln(x) + \frac{x}{(x)})}{ln^{2}(xln(x))(xln(x))} - \frac{-log_{xln(x)}^{xe^{x}}}{x^{2}ln(x)ln(xln(x))} - \frac{(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{xln(x)ln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}*-1}{xln^{2}(x)(x)ln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{xln(x)ln^{2}(xln(x))(xln(x))} - \frac{-log_{xln(x)}^{xe^{x}}}{x^{2}ln(xln(x))} - \frac{(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{xln(xln(x))} - \frac{log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{xln^{2}(xln(x))(xln(x))}\\=&\frac{-1}{x^{2}ln(x)ln^{2}(xln(x))} - \frac{1}{xln(x)ln^{2}(xln(x))} - \frac{1}{x^{2}ln^{2}(xln(x))ln(x)} - \frac{1}{xln^{2}(xln(x))ln(x)} - \frac{2}{x^{2}ln^{2}(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}}{x^{2}ln(x)ln(xln(x))} - \frac{1}{x^{2}ln(xln(x))} - \frac{2}{xln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(xln(x))ln(x)} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(x)ln^{2}(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(x)ln(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln(x)ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}}{x^{2}ln(xln(x))}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-1}{x^{2}ln(x)ln^{2}(xln(x))} - \frac{1}{xln(x)ln^{2}(xln(x))} - \frac{1}{x^{2}ln^{2}(xln(x))ln(x)} - \frac{1}{xln^{2}(xln(x))ln(x)} - \frac{2}{x^{2}ln^{2}(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}}{x^{2}ln(x)ln(xln(x))} - \frac{1}{x^{2}ln(xln(x))} - \frac{2}{xln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(xln(x))ln(x)} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(x)ln^{2}(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(x)ln(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln(x)ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}}{x^{2}ln^{2}(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}}{x^{2}ln(xln(x))}\right)}{dx}\\=&\frac{--2}{x^{3}ln(x)ln^{2}(xln(x))} - \frac{-1}{x^{2}ln^{2}(x)(x)ln^{2}(xln(x))} - \frac{-2(ln(x) + \frac{x}{(x)})}{x^{2}ln(x)ln^{3}(xln(x))(xln(x))} - \frac{-1}{x^{2}ln(x)ln^{2}(xln(x))} - \frac{-1}{xln^{2}(x)(x)ln^{2}(xln(x))} - \frac{-2(ln(x) + \frac{x}{(x)})}{xln(x)ln^{3}(xln(x))(xln(x))} - \frac{-2}{x^{3}ln^{2}(xln(x))ln(x)} - \frac{-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))ln(x)} - \frac{-1}{x^{2}ln^{2}(xln(x))ln^{2}(x)(x)} - \frac{-1}{x^{2}ln^{2}(xln(x))ln(x)} - \frac{-2(ln(x) + \frac{x}{(x)})}{xln^{3}(xln(x))(xln(x))ln(x)} - \frac{-1}{xln^{2}(xln(x))ln^{2}(x)(x)} - \frac{2*-2}{x^{3}ln^{2}(xln(x))} - \frac{2*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))} + \frac{-2log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln(xln(x))} + \frac{(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln(x)ln(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}*-1}{x^{2}ln^{2}(x)(x)ln(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{2}ln(x)ln^{2}(xln(x))(xln(x))} - \frac{-2}{x^{3}ln(xln(x))} - \frac{-(ln(x) + \frac{x}{(x)})}{x^{2}ln^{2}(xln(x))(xln(x))} - \frac{2*-1}{x^{2}ln^{2}(xln(x))} - \frac{2*-2(ln(x) + \frac{x}{(x)})}{xln^{3}(xln(x))(xln(x))} + \frac{2*-2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))ln(x)} + \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln^{2}(xln(x))ln(x)} + \frac{2log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))ln(x)} + \frac{2log_{xln(x)}^{xe^{x}}*-1}{x^{2}ln^{2}(xln(x))ln^{2}(x)(x)} + \frac{2*-2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln^{2}(xln(x))} + \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln^{2}(x)ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}*-2}{x^{2}ln^{3}(x)(x)ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{2}(x)ln^{3}(xln(x))(xln(x))} + \frac{-2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln(xln(x))} + \frac{(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln^{2}(x)ln(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}*-2}{x^{2}ln^{3}(x)(x)ln(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{2}ln^{2}(x)ln^{2}(xln(x))(xln(x))} + \frac{2*-2log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln^{2}(xln(x))} + \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln(x)ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}*-1}{x^{2}ln^{2}(x)(x)ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln(x)ln^{3}(xln(x))(xln(x))} + \frac{2*-2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))} + \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln^{2}(xln(x))} + \frac{2log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))} + \frac{-2log_{xln(x)}^{xe^{x}}}{x^{3}ln(xln(x))} + \frac{(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{2}ln(xln(x))} + \frac{log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{2}ln^{2}(xln(x))(xln(x))}\\=&\frac{3}{x^{3}ln(x)ln^{2}(xln(x))} + \frac{8}{x^{3}ln^{3}(xln(x))ln(x)} + \frac{8}{x^{2}ln^{3}(xln(x))ln(x)} + \frac{4}{x^{3}ln^{2}(x)ln^{3}(xln(x))} + \frac{1}{x^{2}ln(x)ln^{2}(xln(x))} + \frac{4}{x^{2}ln^{2}(x)ln^{3}(xln(x))} + \frac{3}{x^{3}ln^{2}(xln(x))ln(x)} + \frac{2}{x^{2}ln^{2}(xln(x))ln(x)} + \frac{2}{x^{2}ln^{2}(x)ln^{2}(xln(x))} + \frac{4}{x^{3}ln(x)ln^{3}(xln(x))} + \frac{2}{x^{3}ln^{2}(x)ln^{2}(xln(x))} + \frac{4}{x^{2}ln(x)ln^{3}(xln(x))} + \frac{2}{x^{3}ln^{3}(xln(x))ln^{2}(x)} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))ln(x)} - \frac{12log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(xln(x))ln(x)} - \frac{10log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln^{2}(xln(x))} + \frac{2}{x^{2}ln^{3}(xln(x))ln^{2}(x)} + \frac{1}{x^{3}ln^{2}(xln(x))ln^{2}(x)} + \frac{1}{x^{2}ln^{2}(xln(x))ln^{2}(x)} + \frac{6}{x^{3}ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(xln(x))ln^{2}(x)} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))ln^{2}(x)} - \frac{12log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln^{3}(xln(x))} + \frac{6}{x^{3}ln^{3}(xln(x))} + \frac{2}{x^{3}ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(x)ln^{3}(xln(x))} - \frac{3log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(x)ln^{2}(xln(x))} + \frac{6}{x^{2}ln^{3}(xln(x))} + \frac{3}{x^{2}ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln^{3}(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(x)ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln(xln(x))}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3}{x^{3}ln(x)ln^{2}(xln(x))} + \frac{8}{x^{3}ln^{3}(xln(x))ln(x)} + \frac{8}{x^{2}ln^{3}(xln(x))ln(x)} + \frac{4}{x^{3}ln^{2}(x)ln^{3}(xln(x))} + \frac{1}{x^{2}ln(x)ln^{2}(xln(x))} + \frac{4}{x^{2}ln^{2}(x)ln^{3}(xln(x))} + \frac{3}{x^{3}ln^{2}(xln(x))ln(x)} + \frac{2}{x^{2}ln^{2}(xln(x))ln(x)} + \frac{2}{x^{2}ln^{2}(x)ln^{2}(xln(x))} + \frac{4}{x^{3}ln(x)ln^{3}(xln(x))} + \frac{2}{x^{3}ln^{2}(x)ln^{2}(xln(x))} + \frac{4}{x^{2}ln(x)ln^{3}(xln(x))} + \frac{2}{x^{3}ln^{3}(xln(x))ln^{2}(x)} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))ln(x)} - \frac{12log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(xln(x))ln(x)} - \frac{10log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln^{2}(xln(x))} + \frac{2}{x^{2}ln^{3}(xln(x))ln^{2}(x)} + \frac{1}{x^{3}ln^{2}(xln(x))ln^{2}(x)} + \frac{1}{x^{2}ln^{2}(xln(x))ln^{2}(x)} + \frac{6}{x^{3}ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(xln(x))ln^{2}(x)} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))ln^{2}(x)} - \frac{12log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln^{3}(xln(x))} + \frac{6}{x^{3}ln^{3}(xln(x))} + \frac{2}{x^{3}ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(x)ln^{3}(xln(x))} - \frac{3log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(x)ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(x)ln^{2}(xln(x))} + \frac{6}{x^{2}ln^{3}(xln(x))} + \frac{3}{x^{2}ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln(x)ln^{3}(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(x)ln(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}}{x^{3}ln^{2}(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}}{x^{3}ln(xln(x))}\right)}{dx}\\=&\frac{3*-3}{x^{4}ln(x)ln^{2}(xln(x))} + \frac{3*-1}{x^{3}ln^{2}(x)(x)ln^{2}(xln(x))} + \frac{3*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln(x)ln^{3}(xln(x))(xln(x))} + \frac{8*-3}{x^{4}ln^{3}(xln(x))ln(x)} + \frac{8*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{4}(xln(x))(xln(x))ln(x)} + \frac{8*-1}{x^{3}ln^{3}(xln(x))ln^{2}(x)(x)} + \frac{8*-2}{x^{3}ln^{3}(xln(x))ln(x)} + \frac{8*-3(ln(x) + \frac{x}{(x)})}{x^{2}ln^{4}(xln(x))(xln(x))ln(x)} + \frac{8*-1}{x^{2}ln^{3}(xln(x))ln^{2}(x)(x)} + \frac{4*-3}{x^{4}ln^{2}(x)ln^{3}(xln(x))} + \frac{4*-2}{x^{3}ln^{3}(x)(x)ln^{3}(xln(x))} + \frac{4*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(x)ln^{4}(xln(x))(xln(x))} + \frac{-2}{x^{3}ln(x)ln^{2}(xln(x))} + \frac{-1}{x^{2}ln^{2}(x)(x)ln^{2}(xln(x))} + \frac{-2(ln(x) + \frac{x}{(x)})}{x^{2}ln(x)ln^{3}(xln(x))(xln(x))} + \frac{4*-2}{x^{3}ln^{2}(x)ln^{3}(xln(x))} + \frac{4*-2}{x^{2}ln^{3}(x)(x)ln^{3}(xln(x))} + \frac{4*-3(ln(x) + \frac{x}{(x)})}{x^{2}ln^{2}(x)ln^{4}(xln(x))(xln(x))} + \frac{3*-3}{x^{4}ln^{2}(xln(x))ln(x)} + \frac{3*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(xln(x))(xln(x))ln(x)} + \frac{3*-1}{x^{3}ln^{2}(xln(x))ln^{2}(x)(x)} + \frac{2*-2}{x^{3}ln^{2}(xln(x))ln(x)} + \frac{2*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))ln(x)} + \frac{2*-1}{x^{2}ln^{2}(xln(x))ln^{2}(x)(x)} + \frac{2*-2}{x^{3}ln^{2}(x)ln^{2}(xln(x))} + \frac{2*-2}{x^{2}ln^{3}(x)(x)ln^{2}(xln(x))} + \frac{2*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{2}(x)ln^{3}(xln(x))(xln(x))} + \frac{4*-3}{x^{4}ln(x)ln^{3}(xln(x))} + \frac{4*-1}{x^{3}ln^{2}(x)(x)ln^{3}(xln(x))} + \frac{4*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln(x)ln^{4}(xln(x))(xln(x))} + \frac{2*-3}{x^{4}ln^{2}(x)ln^{2}(xln(x))} + \frac{2*-2}{x^{3}ln^{3}(x)(x)ln^{2}(xln(x))} + \frac{2*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(x)ln^{3}(xln(x))(xln(x))} + \frac{4*-2}{x^{3}ln(x)ln^{3}(xln(x))} + \frac{4*-1}{x^{2}ln^{2}(x)(x)ln^{3}(xln(x))} + \frac{4*-3(ln(x) + \frac{x}{(x)})}{x^{2}ln(x)ln^{4}(xln(x))(xln(x))} + \frac{2*-3}{x^{4}ln^{3}(xln(x))ln^{2}(x)} + \frac{2*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{4}(xln(x))(xln(x))ln^{2}(x)} + \frac{2*-2}{x^{3}ln^{3}(xln(x))ln^{3}(x)(x)} - \frac{2*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln(xln(x))} - \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln(x)ln(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}*-1}{x^{3}ln^{2}(x)(x)ln(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{3}ln(x)ln^{2}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))ln(x)} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{2}(xln(x))ln(x)} - \frac{6log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(xln(x))(xln(x))ln(x)} - \frac{6log_{xln(x)}^{xe^{x}}*-1}{x^{3}ln^{2}(xln(x))ln^{2}(x)(x)} - \frac{12*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))ln(x)} - \frac{12(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{3}(xln(x))ln(x)} - \frac{12log_{xln(x)}^{xe^{x}}*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{4}(xln(x))(xln(x))ln(x)} - \frac{12log_{xln(x)}^{xe^{x}}*-1}{x^{3}ln^{3}(xln(x))ln^{2}(x)(x)} - \frac{10*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln^{2}(xln(x))} - \frac{10(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{2}(x)ln^{2}(xln(x))} - \frac{10log_{xln(x)}^{xe^{x}}*-2}{x^{3}ln^{3}(x)(x)ln^{2}(xln(x))} - \frac{10log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(x)ln^{3}(xln(x))(xln(x))} + \frac{2*-2}{x^{3}ln^{3}(xln(x))ln^{2}(x)} + \frac{2*-3(ln(x) + \frac{x}{(x)})}{x^{2}ln^{4}(xln(x))(xln(x))ln^{2}(x)} + \frac{2*-2}{x^{2}ln^{3}(xln(x))ln^{3}(x)(x)} + \frac{-3}{x^{4}ln^{2}(xln(x))ln^{2}(x)} + \frac{-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(xln(x))(xln(x))ln^{2}(x)} + \frac{-2}{x^{3}ln^{2}(xln(x))ln^{3}(x)(x)} + \frac{-2}{x^{3}ln^{2}(xln(x))ln^{2}(x)} + \frac{-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))ln^{2}(x)} + \frac{-2}{x^{2}ln^{2}(xln(x))ln^{3}(x)(x)} + \frac{6*-3}{x^{4}ln^{2}(xln(x))} + \frac{6*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))ln^{2}(x)} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{3}(xln(x))ln^{2}(x)} - \frac{6log_{xln(x)}^{xe^{x}}*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{4}(xln(x))(xln(x))ln^{2}(x)} - \frac{6log_{xln(x)}^{xe^{x}}*-2}{x^{3}ln^{3}(xln(x))ln^{3}(x)(x)} - \frac{2*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))ln^{2}(x)} - \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{2}(xln(x))ln^{2}(x)} - \frac{2log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(xln(x))(xln(x))ln^{2}(x)} - \frac{2log_{xln(x)}^{xe^{x}}*-2}{x^{3}ln^{2}(xln(x))ln^{3}(x)(x)} - \frac{12*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln^{3}(xln(x))} - \frac{12(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{2}(x)ln^{3}(xln(x))} - \frac{12log_{xln(x)}^{xe^{x}}*-2}{x^{3}ln^{3}(x)(x)ln^{3}(xln(x))} - \frac{12log_{xln(x)}^{xe^{x}}*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(x)ln^{4}(xln(x))(xln(x))} + \frac{6*-3}{x^{4}ln^{3}(xln(x))} + \frac{6*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{4}(xln(x))(xln(x))} + \frac{2*-3}{x^{4}ln(xln(x))} + \frac{2*-(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln^{3}(xln(x))} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{3}(x)ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-3}{x^{3}ln^{4}(x)(x)ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(x)ln^{4}(xln(x))(xln(x))} - \frac{3*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln(xln(x))} - \frac{3(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{2}(x)ln(xln(x))} - \frac{3log_{xln(x)}^{xe^{x}}*-2}{x^{3}ln^{3}(x)(x)ln(xln(x))} - \frac{3log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(x)ln^{2}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln^{2}(xln(x))} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{3}(x)ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-3}{x^{3}ln^{4}(x)(x)ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(x)ln^{3}(xln(x))(xln(x))} + \frac{6*-2}{x^{3}ln^{3}(xln(x))} + \frac{6*-3(ln(x) + \frac{x}{(x)})}{x^{2}ln^{4}(xln(x))(xln(x))} + \frac{3*-2}{x^{3}ln^{2}(xln(x))} + \frac{3*-2(ln(x) + \frac{x}{(x)})}{x^{2}ln^{3}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln^{2}(xln(x))} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln(x)ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-1}{x^{3}ln^{2}(x)(x)ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln(x)ln^{3}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln^{3}(xln(x))} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln(x)ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-1}{x^{3}ln^{2}(x)(x)ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln(x)ln^{4}(xln(x))(xln(x))} - \frac{2*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln(xln(x))} - \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{3}(x)ln(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}*-3}{x^{3}ln^{4}(x)(x)ln(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(x)ln^{2}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{3}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-3(ln(x) + \frac{x}{(x)})}{x^{3}ln^{4}(xln(x))(xln(x))} - \frac{6*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))} - \frac{6(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln^{2}(xln(x))} - \frac{6log_{xln(x)}^{xe^{x}}*-2(ln(x) + \frac{x}{(x)})}{x^{3}ln^{3}(xln(x))(xln(x))} - \frac{2*-3log_{xln(x)}^{xe^{x}}}{x^{4}ln(xln(x))} - \frac{2(\frac{(\frac{(e^{x} + xe^{x})}{(xe^{x})} - \frac{(ln(x) + \frac{x}{(x)})log_{xln(x)}^{xe^{x}}}{(xln(x))})}{(ln(xln(x)))})}{x^{3}ln(xln(x))} - \frac{2log_{xln(x)}^{xe^{x}}*-(ln(x) + \frac{x}{(x)})}{x^{3}ln^{2}(xln(x))(xln(x))}\\=&\frac{-11}{x^{4}ln(x)ln^{2}(xln(x))} - \frac{48}{x^{4}ln^{3}(xln(x))ln(x)} - \frac{54}{x^{4}ln^{4}(xln(x))ln(x)} - \frac{36}{x^{4}ln^{2}(x)ln^{3}(xln(x))} - \frac{54}{x^{3}ln^{4}(xln(x))ln(x)} - \frac{36}{x^{4}ln^{2}(x)ln^{4}(xln(x))} - \frac{36}{x^{4}ln^{4}(xln(x))ln^{2}(x)} - \frac{34}{x^{3}ln^{3}(xln(x))ln(x)} - \frac{36}{x^{3}ln^{2}(x)ln^{4}(xln(x))} - \frac{36}{x^{3}ln^{4}(xln(x))ln^{2}(x)} - \frac{18}{x^{4}ln^{3}(x)ln^{4}(xln(x))} - \frac{2}{x^{3}ln(x)ln^{2}(xln(x))} - \frac{22}{x^{3}ln^{3}(xln(x))ln^{2}(x)} - \frac{26}{x^{3}ln^{2}(x)ln^{3}(xln(x))} - \frac{24}{x^{4}ln^{3}(xln(x))ln^{2}(x)} - \frac{18}{x^{3}ln^{3}(x)ln^{4}(xln(x))} - \frac{11}{x^{4}ln^{2}(xln(x))ln(x)} - \frac{6}{x^{3}ln^{2}(xln(x))ln(x)} - \frac{7}{x^{3}ln^{2}(x)ln^{2}(xln(x))} - \frac{18}{x^{3}ln^{3}(x)ln^{3}(xln(x))} - \frac{24}{x^{4}ln(x)ln^{3}(xln(x))} - \frac{12}{x^{4}ln^{2}(x)ln^{2}(xln(x))} - \frac{18}{x^{4}ln^{3}(x)ln^{3}(xln(x))} - \frac{14}{x^{3}ln(x)ln^{3}(xln(x))} - \frac{6}{x^{4}ln^{2}(xln(x))ln^{2}(x)} - \frac{6}{x^{4}ln^{3}(x)ln^{2}(xln(x))} - \frac{5}{x^{3}ln^{2}(xln(x))ln^{2}(x)} - \frac{6}{x^{3}ln^{3}(x)ln^{2}(xln(x))} - \frac{18}{x^{4}ln(x)ln^{4}(xln(x))} + \frac{6log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln(xln(x))} + \frac{22log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))ln(x)} + \frac{72log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))ln(x)} + \frac{46log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln^{2}(xln(x))} + \frac{72log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(xln(x))ln(x)} + \frac{54log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))ln^{2}(x)} + \frac{90log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln^{3}(xln(x))} + \frac{72log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(xln(x))ln^{2}(x)} + \frac{24log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(xln(x))ln^{3}(x)} + \frac{72log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln^{4}(xln(x))} + \frac{12log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))ln^{2}(x)} + \frac{18log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))ln^{3}(x)} + \frac{90log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln^{3}(xln(x))} - \frac{18}{x^{3}ln(x)ln^{4}(xln(x))} - \frac{6}{x^{4}ln^{4}(xln(x))ln^{3}(x)} - \frac{6}{x^{3}ln^{4}(xln(x))ln^{3}(x)} - \frac{6}{x^{4}ln^{3}(xln(x))ln^{3}(x)} + \frac{4log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))ln^{3}(x)} + \frac{72log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln^{4}(xln(x))} + \frac{24log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(x)ln^{4}(xln(x))} - \frac{6}{x^{3}ln^{3}(xln(x))ln^{3}(x)} - \frac{2}{x^{4}ln^{2}(xln(x))ln^{3}(x)} - \frac{2}{x^{3}ln^{2}(xln(x))ln^{3}(x)} - \frac{24}{x^{3}ln^{3}(xln(x))} + \frac{11log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(x)ln(xln(x))} + \frac{12log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln(xln(x))} + \frac{48log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(x)ln^{2}(xln(x))} + \frac{22log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(x)ln^{2}(xln(x))} + \frac{36log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(x)ln^{3}(xln(x))} + \frac{22log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln^{2}(xln(x))} - \frac{24}{x^{4}ln^{4}(xln(x))} - \frac{22}{x^{4}ln^{2}(xln(x))} + \frac{36log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln^{3}(xln(x))} + \frac{6log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(x)ln(xln(x))} - \frac{24}{x^{3}ln^{4}(xln(x))} - \frac{8}{x^{3}ln^{2}(xln(x))} + \frac{24log_{xln(x)}^{xe^{x}}}{x^{4}ln(x)ln^{4}(xln(x))} + \frac{36log_{xln(x)}^{xe^{x}}}{x^{4}ln^{3}(xln(x))} - \frac{6}{x^{4}ln(xln(x))} - \frac{36}{x^{4}ln^{3}(xln(x))} + \frac{22log_{xln(x)}^{xe^{x}}}{x^{4}ln^{2}(xln(x))} + \frac{24log_{xln(x)}^{xe^{x}}}{x^{4}ln^{4}(xln(x))} + \frac{6log_{xln(x)}^{xe^{x}}}{x^{4}ln(xln(x))}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。