本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{x}^{3}}{ln(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{3}}{ln(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{3}}{ln(x)}\right)}{dx}\\=&\frac{3x^{2}}{ln(x)} + \frac{x^{3}*-1}{ln^{2}(x)(x)}\\=&\frac{3x^{2}}{ln(x)} - \frac{x^{2}}{ln^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{3x^{2}}{ln(x)} - \frac{x^{2}}{ln^{2}(x)}\right)}{dx}\\=&\frac{3*2x}{ln(x)} + \frac{3x^{2}*-1}{ln^{2}(x)(x)} - \frac{2x}{ln^{2}(x)} - \frac{x^{2}*-2}{ln^{3}(x)(x)}\\=&\frac{6x}{ln(x)} - \frac{5x}{ln^{2}(x)} + \frac{2x}{ln^{3}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{6x}{ln(x)} - \frac{5x}{ln^{2}(x)} + \frac{2x}{ln^{3}(x)}\right)}{dx}\\=&\frac{6}{ln(x)} + \frac{6x*-1}{ln^{2}(x)(x)} - \frac{5}{ln^{2}(x)} - \frac{5x*-2}{ln^{3}(x)(x)} + \frac{2}{ln^{3}(x)} + \frac{2x*-3}{ln^{4}(x)(x)}\\=&\frac{6}{ln(x)} - \frac{11}{ln^{2}(x)} + \frac{12}{ln^{3}(x)} - \frac{6}{ln^{4}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{6}{ln(x)} - \frac{11}{ln^{2}(x)} + \frac{12}{ln^{3}(x)} - \frac{6}{ln^{4}(x)}\right)}{dx}\\=&\frac{6*-1}{ln^{2}(x)(x)} - \frac{11*-2}{ln^{3}(x)(x)} + \frac{12*-3}{ln^{4}(x)(x)} - \frac{6*-4}{ln^{5}(x)(x)}\\=&\frac{-6}{xln^{2}(x)} + \frac{22}{xln^{3}(x)} - \frac{36}{xln^{4}(x)} + \frac{24}{xln^{5}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!