本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{1}{10}{(145000 + x)}^{\frac{9}{10}} + \frac{9}{10}{(145000 - \frac{x}{9})}^{\frac{9}{10}} + \frac{x}{900} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{10}(x + 145000)^{\frac{9}{10}} + \frac{9}{10}(\frac{-1}{9}x + 145000)^{\frac{9}{10}} + \frac{1}{900}x\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{10}(x + 145000)^{\frac{9}{10}} + \frac{9}{10}(\frac{-1}{9}x + 145000)^{\frac{9}{10}} + \frac{1}{900}x\right)}{dx}\\=&\frac{1}{10}(\frac{\frac{9}{10}(1 + 0)}{(x + 145000)^{\frac{1}{10}}}) + \frac{9}{10}(\frac{\frac{9}{10}(\frac{-1}{9} + 0)}{(\frac{-1}{9}x + 145000)^{\frac{1}{10}}}) + \frac{1}{900}\\=&\frac{9}{100(x + 145000)^{\frac{1}{10}}} - \frac{9}{100(\frac{-1}{9}x + 145000)^{\frac{1}{10}}} + \frac{1}{900}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!