本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{tan(x)}^{2}{\frac{1}{sec(x)}}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{tan^{2}(x)}{sec^{2}(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{tan^{2}(x)}{sec^{2}(x)}\right)}{dx}\\=&\frac{2tan(x)sec^{2}(x)(1)}{sec^{2}(x)} + \frac{tan^{2}(x)*-2tan(x)}{sec^{2}(x)}\\=&\frac{-2tan^{3}(x)}{sec^{2}(x)} + 2tan(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2tan^{3}(x)}{sec^{2}(x)} + 2tan(x)\right)}{dx}\\=&\frac{-2*3tan^{2}(x)sec^{2}(x)(1)}{sec^{2}(x)} - \frac{2tan^{3}(x)*-2tan(x)}{sec^{2}(x)} + 2sec^{2}(x)(1)\\=&\frac{4tan^{4}(x)}{sec^{2}(x)} - 6tan^{2}(x) + 2sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{4tan^{4}(x)}{sec^{2}(x)} - 6tan^{2}(x) + 2sec^{2}(x)\right)}{dx}\\=&\frac{4*4tan^{3}(x)sec^{2}(x)(1)}{sec^{2}(x)} + \frac{4tan^{4}(x)*-2tan(x)}{sec^{2}(x)} - 6*2tan(x)sec^{2}(x)(1) + 2*2sec^{2}(x)tan(x)\\=& - \frac{8tan^{5}(x)}{sec^{2}(x)} - 8tan(x)sec^{2}(x) + 16tan^{3}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{8tan^{5}(x)}{sec^{2}(x)} - 8tan(x)sec^{2}(x) + 16tan^{3}(x)\right)}{dx}\\=& - \frac{8*5tan^{4}(x)sec^{2}(x)(1)}{sec^{2}(x)} - \frac{8tan^{5}(x)*-2tan(x)}{sec^{2}(x)} - 8sec^{2}(x)(1)sec^{2}(x) - 8tan(x)*2sec^{2}(x)tan(x) + 16*3tan^{2}(x)sec^{2}(x)(1)\\=&\frac{16tan^{6}(x)}{sec^{2}(x)} + 32tan^{2}(x)sec^{2}(x) - 8sec^{4}(x) - 40tan^{4}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!