本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数4({(3bbbb - 16(abbc - aacc - aabd + 4aaaf))}^{2} - (9bb - 24ac){(bbb - 4abc + 8aad)}^{2})(16aabd + 16aacc + 192aaaf) - 1024aaaa{(16aacf - 6abbf - 18aadd + 14abcd - 4accc - 3bbbd + bbcc)}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 745472b^{3}a^{6}cdf - 98304b^{5}a^{5}df - 598016b^{2}a^{7}d^{2}f - 1507328ba^{7}c^{2}df - 249856b^{2}a^{6}c^{2}d^{2} + 114688b^{4}a^{5}cd^{2} + 4096b^{5}a^{4}c^{2}d - 1310720ba^{8}df^{2} - 12288b^{6}a^{4}d^{2} - 131072b^{3}a^{6}d^{3} - 49152b^{2}a^{6}c^{3}f - 1572864a^{8}c^{2}f^{2} - 32768b^{3}a^{5}c^{3}d + 196608a^{7}c^{4}f - 331776b^{4}a^{6}f^{2} + 1769472b^{2}a^{7}cf^{2} + 3145728a^{9}f^{3} + 614400ba^{7}cd^{3} + 65536ba^{6}c^{4}d + 1769472a^{8}cd^{2}f - 49152a^{7}c^{3}d^{2} - 331776a^{8}d^{4}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 745472b^{3}a^{6}cdf - 98304b^{5}a^{5}df - 598016b^{2}a^{7}d^{2}f - 1507328ba^{7}c^{2}df - 249856b^{2}a^{6}c^{2}d^{2} + 114688b^{4}a^{5}cd^{2} + 4096b^{5}a^{4}c^{2}d - 1310720ba^{8}df^{2} - 12288b^{6}a^{4}d^{2} - 131072b^{3}a^{6}d^{3} - 49152b^{2}a^{6}c^{3}f - 1572864a^{8}c^{2}f^{2} - 32768b^{3}a^{5}c^{3}d + 196608a^{7}c^{4}f - 331776b^{4}a^{6}f^{2} + 1769472b^{2}a^{7}cf^{2} + 3145728a^{9}f^{3} + 614400ba^{7}cd^{3} + 65536ba^{6}c^{4}d + 1769472a^{8}cd^{2}f - 49152a^{7}c^{3}d^{2} - 331776a^{8}d^{4}\right)}{dx}\\=&0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!