本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-sin(x)}{(ln(10)cos(x))} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-sin(x)}{ln(10)cos(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-sin(x)}{ln(10)cos(x)}\right)}{dx}\\=&\frac{--0sin(x)}{ln^{2}(10)(10)cos(x)} - \frac{cos(x)}{ln(10)cos(x)} - \frac{sin(x)sin(x)}{ln(10)cos^{2}(x)}\\=& - \frac{sin^{2}(x)}{ln(10)cos^{2}(x)} - \frac{1}{ln(10)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{sin^{2}(x)}{ln(10)cos^{2}(x)} - \frac{1}{ln(10)}\right)}{dx}\\=& - \frac{-0sin^{2}(x)}{ln^{2}(10)(10)cos^{2}(x)} - \frac{2sin(x)cos(x)}{ln(10)cos^{2}(x)} - \frac{sin^{2}(x)*2sin(x)}{ln(10)cos^{3}(x)} - \frac{-0}{ln^{2}(10)(10)}\\=& - \frac{2sin(x)}{ln(10)cos(x)} - \frac{2sin^{3}(x)}{ln(10)cos^{3}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{2sin(x)}{ln(10)cos(x)} - \frac{2sin^{3}(x)}{ln(10)cos^{3}(x)}\right)}{dx}\\=& - \frac{2*-0sin(x)}{ln^{2}(10)(10)cos(x)} - \frac{2cos(x)}{ln(10)cos(x)} - \frac{2sin(x)sin(x)}{ln(10)cos^{2}(x)} - \frac{2*-0sin^{3}(x)}{ln^{2}(10)(10)cos^{3}(x)} - \frac{2*3sin^{2}(x)cos(x)}{ln(10)cos^{3}(x)} - \frac{2sin^{3}(x)*3sin(x)}{ln(10)cos^{4}(x)}\\=& - \frac{8sin^{2}(x)}{ln(10)cos^{2}(x)} - \frac{6sin^{4}(x)}{ln(10)cos^{4}(x)} - \frac{2}{ln(10)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{8sin^{2}(x)}{ln(10)cos^{2}(x)} - \frac{6sin^{4}(x)}{ln(10)cos^{4}(x)} - \frac{2}{ln(10)}\right)}{dx}\\=& - \frac{8*-0sin^{2}(x)}{ln^{2}(10)(10)cos^{2}(x)} - \frac{8*2sin(x)cos(x)}{ln(10)cos^{2}(x)} - \frac{8sin^{2}(x)*2sin(x)}{ln(10)cos^{3}(x)} - \frac{6*-0sin^{4}(x)}{ln^{2}(10)(10)cos^{4}(x)} - \frac{6*4sin^{3}(x)cos(x)}{ln(10)cos^{4}(x)} - \frac{6sin^{4}(x)*4sin(x)}{ln(10)cos^{5}(x)} - \frac{2*-0}{ln^{2}(10)(10)}\\=& - \frac{16sin(x)}{ln(10)cos(x)} - \frac{40sin^{3}(x)}{ln(10)cos^{3}(x)} - \frac{24sin^{5}(x)}{ln(10)cos^{5}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!