本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{{3}^{x}}ln({e}^{2022}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2022e^{{3}^{x}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2022e^{{3}^{x}}\right)}{dx}\\=&2022e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))\\=&2022 * {3}^{x}e^{{3}^{x}}ln(3)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2022 * {3}^{x}e^{{3}^{x}}ln(3)\right)}{dx}\\=&2022({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))e^{{3}^{x}}ln(3) + 2022 * {3}^{x}e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln(3) + \frac{2022 * {3}^{x}e^{{3}^{x}}*0}{(3)}\\=&2022 * {3}^{x}e^{{3}^{x}}ln^{2}(3) + 2022 * {3}^{(2x)}e^{{3}^{x}}ln^{2}(3)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2022 * {3}^{x}e^{{3}^{x}}ln^{2}(3) + 2022 * {3}^{(2x)}e^{{3}^{x}}ln^{2}(3)\right)}{dx}\\=&2022({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))e^{{3}^{x}}ln^{2}(3) + 2022 * {3}^{x}e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln^{2}(3) + \frac{2022 * {3}^{x}e^{{3}^{x}}*2ln(3)*0}{(3)} + 2022({3}^{(2x)}((2)ln(3) + \frac{(2x)(0)}{(3)}))e^{{3}^{x}}ln^{2}(3) + 2022 * {3}^{(2x)}e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln^{2}(3) + \frac{2022 * {3}^{(2x)}e^{{3}^{x}}*2ln(3)*0}{(3)}\\=&2022 * {3}^{x}e^{{3}^{x}}ln^{3}(3) + 6066 * {3}^{(2x)}e^{{3}^{x}}ln^{3}(3) + 2022 * {3}^{(3x)}e^{{3}^{x}}ln^{3}(3)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 2022 * {3}^{x}e^{{3}^{x}}ln^{3}(3) + 6066 * {3}^{(2x)}e^{{3}^{x}}ln^{3}(3) + 2022 * {3}^{(3x)}e^{{3}^{x}}ln^{3}(3)\right)}{dx}\\=&2022({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))e^{{3}^{x}}ln^{3}(3) + 2022 * {3}^{x}e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln^{3}(3) + \frac{2022 * {3}^{x}e^{{3}^{x}}*3ln^{2}(3)*0}{(3)} + 6066({3}^{(2x)}((2)ln(3) + \frac{(2x)(0)}{(3)}))e^{{3}^{x}}ln^{3}(3) + 6066 * {3}^{(2x)}e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln^{3}(3) + \frac{6066 * {3}^{(2x)}e^{{3}^{x}}*3ln^{2}(3)*0}{(3)} + 2022({3}^{(3x)}((3)ln(3) + \frac{(3x)(0)}{(3)}))e^{{3}^{x}}ln^{3}(3) + 2022 * {3}^{(3x)}e^{{3}^{x}}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln^{3}(3) + \frac{2022 * {3}^{(3x)}e^{{3}^{x}}*3ln^{2}(3)*0}{(3)}\\=&2022 * {3}^{x}e^{{3}^{x}}ln^{4}(3) + 14154 * {3}^{(2x)}e^{{3}^{x}}ln^{4}(3) + 12132 * {3}^{(3x)}e^{{3}^{x}}ln^{4}(3) + 2022 * {3}^{(4x)}e^{{3}^{x}}ln^{4}(3)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!