本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arctan(cot(sqrt(e^{x}))) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(cot(sqrt(e^{x})))\right)}{dx}\\=&(\frac{(\frac{-csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}})}{(1 + (cot(sqrt(e^{x})))^{2})})\\=&\frac{-e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\right)}{dx}\\=&\frac{-(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{2} - \frac{\frac{1}{2}e^{x}csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)e^{{x}*{\frac{1}{2}}}} - \frac{e^{{x}*{\frac{1}{2}}}*-2csc^{2}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{2(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}}\\=&\frac{-e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} + \frac{e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} + \frac{e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\right)}{dx}\\=&\frac{-(\frac{-2(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{3}})e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2} - \frac{e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{e^{x}*-csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} - \frac{e^{x}cot(sqrt(e^{x}))*-4csc^{4}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} - \frac{(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{4} - \frac{\frac{1}{2}e^{x}csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)e^{{x}*{\frac{1}{2}}}} - \frac{e^{{x}*{\frac{1}{2}}}*-2csc^{2}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{4(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} + \frac{(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2} + \frac{e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)} + \frac{e^{x}*-csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} + \frac{e^{x}cot(sqrt(e^{x}))*-2csc^{2}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{2(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}}\\=&\frac{-e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{6}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{3}} - \frac{3e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{e^{{x}*{\frac{3}{2}}}csc^{6}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{3e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{8(cot^{2}(sqrt(e^{x})) + 1)} + \frac{3e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} - \frac{e^{{x}*{\frac{3}{2}}}csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} - \frac{e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{6}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{3}} - \frac{3e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{e^{{x}*{\frac{3}{2}}}csc^{6}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{3e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{8(cot^{2}(sqrt(e^{x})) + 1)} + \frac{3e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} - \frac{e^{{x}*{\frac{3}{2}}}csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} - \frac{e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\right)}{dx}\\=&-(\frac{-3(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{4}})e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{6}(sqrt(e^{x})) - \frac{\frac{3}{2}e^{{x}*{\frac{1}{2}}}e^{x}cot^{2}(sqrt(e^{x}))csc^{6}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{3}} - \frac{e^{{x}*{\frac{3}{2}}}*-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{6}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{3}(e^{x})^{\frac{1}{2}}} - \frac{e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))*-6csc^{6}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(cot^{2}(sqrt(e^{x})) + 1)^{3}(e^{x})^{\frac{1}{2}}} - \frac{3(\frac{-2(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{3}})e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{4} - \frac{3e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{3e^{x}*-csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} - \frac{3e^{x}cot(sqrt(e^{x}))*-4csc^{4}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} + \frac{(\frac{-2(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{3}})e^{{x}*{\frac{3}{2}}}csc^{6}(sqrt(e^{x}))}{4} + \frac{\frac{3}{2}e^{{x}*{\frac{1}{2}}}e^{x}csc^{6}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{e^{{x}*{\frac{3}{2}}}*-6csc^{6}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} + \frac{3(\frac{-2(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{3}})e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2} + \frac{3*\frac{3}{2}e^{{x}*{\frac{1}{2}}}e^{x}cot^{2}(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{3e^{{x}*{\frac{3}{2}}}*-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} + \frac{3e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))*-4csc^{4}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}(e^{x})^{\frac{1}{2}}} - \frac{(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{8} - \frac{\frac{1}{2}e^{x}csc^{2}(sqrt(e^{x}))}{8(cot^{2}(sqrt(e^{x})) + 1)e^{{x}*{\frac{1}{2}}}} - \frac{e^{{x}*{\frac{1}{2}}}*-2csc^{2}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{8(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} + \frac{3(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{4} + \frac{3e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} + \frac{3e^{x}*-csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{2}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} + \frac{3e^{x}cot(sqrt(e^{x}))*-2csc^{2}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{4(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} - \frac{(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{{x}*{\frac{3}{2}}}csc^{4}(sqrt(e^{x}))}{4} - \frac{\frac{3}{2}e^{{x}*{\frac{1}{2}}}e^{x}csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} - \frac{e^{{x}*{\frac{3}{2}}}*-4csc^{4}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{4(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} - \frac{(\frac{-(\frac{-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}}{(e^{x})^{\frac{1}{2}}} + 0)}{(cot^{2}(sqrt(e^{x})) + 1)^{2}})e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2} - \frac{\frac{3}{2}e^{{x}*{\frac{1}{2}}}e^{x}cot^{2}(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)} - \frac{e^{{x}*{\frac{3}{2}}}*-2cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))e^{x}*\frac{1}{2}csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}} - \frac{e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))*-2csc^{2}(sqrt(e^{x}))cot(sqrt(e^{x}))e^{x}*\frac{1}{2}}{2(cot^{2}(sqrt(e^{x})) + 1)(e^{x})^{\frac{1}{2}}}\\=&\frac{-3e^{{x}*{2}}cot^{3}(sqrt(e^{x}))csc^{8}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{4}} - \frac{3e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{6}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{3}} + \frac{3e^{{x}*{2}}cot(sqrt(e^{x}))csc^{8}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{3}} + \frac{6e^{{x}*{2}}cot^{3}(sqrt(e^{x}))csc^{6}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)^{3}} - \frac{7e^{x}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{8(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{3e^{{x}*{\frac{3}{2}}}csc^{6}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{9e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{5e^{{x}*{2}}cot(sqrt(e^{x}))csc^{6}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} + \frac{e^{{x}*{2}}cot(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{(cot^{2}(sqrt(e^{x})) + 1)} - \frac{7e^{{x}*{2}}cot^{3}(sqrt(e^{x}))csc^{4}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)^{2}} - \frac{e^{{x}*{\frac{1}{2}}}csc^{2}(sqrt(e^{x}))}{16(cot^{2}(sqrt(e^{x})) + 1)} + \frac{7e^{x}cot(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{8(cot^{2}(sqrt(e^{x})) + 1)} - \frac{3e^{{x}*{\frac{3}{2}}}csc^{4}(sqrt(e^{x}))}{4(cot^{2}(sqrt(e^{x})) + 1)} - \frac{3e^{{x}*{\frac{3}{2}}}cot^{2}(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)} + \frac{e^{{x}*{2}}cot^{3}(sqrt(e^{x}))csc^{2}(sqrt(e^{x}))}{2(cot^{2}(sqrt(e^{x})) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!