本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数lg(e^{cot(x)}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( lg(e^{cot(x)})\right)}{dx}\\=&\frac{e^{cot(x)}*-csc^{2}(x)}{ln{10}(e^{cot(x)})}\\=&\frac{-csc^{2}(x)}{ln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-csc^{2}(x)}{ln{10}}\right)}{dx}\\=&\frac{--0csc^{2}(x)}{ln^{2}{10}} - \frac{-2csc^{2}(x)cot(x)}{ln{10}}\\=&\frac{2cot(x)csc^{2}(x)}{ln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2cot(x)csc^{2}(x)}{ln{10}}\right)}{dx}\\=&\frac{2*-0cot(x)csc^{2}(x)}{ln^{2}{10}} + \frac{2*-csc^{2}(x)csc^{2}(x)}{ln{10}} + \frac{2cot(x)*-2csc^{2}(x)cot(x)}{ln{10}}\\=& - \frac{2csc^{4}(x)}{ln{10}} - \frac{4cot^{2}(x)csc^{2}(x)}{ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{2csc^{4}(x)}{ln{10}} - \frac{4cot^{2}(x)csc^{2}(x)}{ln{10}}\right)}{dx}\\=& - \frac{2*-0csc^{4}(x)}{ln^{2}{10}} - \frac{2*-4csc^{4}(x)cot(x)}{ln{10}} - \frac{4*-0cot^{2}(x)csc^{2}(x)}{ln^{2}{10}} - \frac{4*-2cot(x)csc^{2}(x)csc^{2}(x)}{ln{10}} - \frac{4cot^{2}(x)*-2csc^{2}(x)cot(x)}{ln{10}}\\=&\frac{16cot(x)csc^{4}(x)}{ln{10}} + \frac{8cot^{3}(x)csc^{2}(x)}{ln{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!