本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(ln(x) - 1){\frac{1}{ln(x)}}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{ln(x)} - \frac{1}{ln^{2}(x)}\right)}{dx}\\=&\frac{-1}{ln^{2}(x)(x)} - \frac{-2}{ln^{3}(x)(x)}\\=&\frac{-1}{xln^{2}(x)} + \frac{2}{xln^{3}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-1}{xln^{2}(x)} + \frac{2}{xln^{3}(x)}\right)}{dx}\\=&\frac{--1}{x^{2}ln^{2}(x)} - \frac{-2}{xln^{3}(x)(x)} + \frac{2*-1}{x^{2}ln^{3}(x)} + \frac{2*-3}{xln^{4}(x)(x)}\\=&\frac{1}{x^{2}ln^{2}(x)} - \frac{6}{x^{2}ln^{4}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{1}{x^{2}ln^{2}(x)} - \frac{6}{x^{2}ln^{4}(x)}\right)}{dx}\\=&\frac{-2}{x^{3}ln^{2}(x)} + \frac{-2}{x^{2}ln^{3}(x)(x)} - \frac{6*-2}{x^{3}ln^{4}(x)} - \frac{6*-4}{x^{2}ln^{5}(x)(x)}\\=&\frac{-2}{x^{3}ln^{2}(x)} - \frac{2}{x^{3}ln^{3}(x)} + \frac{12}{x^{3}ln^{4}(x)} + \frac{24}{x^{3}ln^{5}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-2}{x^{3}ln^{2}(x)} - \frac{2}{x^{3}ln^{3}(x)} + \frac{12}{x^{3}ln^{4}(x)} + \frac{24}{x^{3}ln^{5}(x)}\right)}{dx}\\=&\frac{-2*-3}{x^{4}ln^{2}(x)} - \frac{2*-2}{x^{3}ln^{3}(x)(x)} - \frac{2*-3}{x^{4}ln^{3}(x)} - \frac{2*-3}{x^{3}ln^{4}(x)(x)} + \frac{12*-3}{x^{4}ln^{4}(x)} + \frac{12*-4}{x^{3}ln^{5}(x)(x)} + \frac{24*-3}{x^{4}ln^{5}(x)} + \frac{24*-5}{x^{3}ln^{6}(x)(x)}\\=&\frac{6}{x^{4}ln^{2}(x)} + \frac{10}{x^{4}ln^{3}(x)} - \frac{30}{x^{4}ln^{4}(x)} - \frac{120}{x^{4}ln^{5}(x)} - \frac{120}{x^{4}ln^{6}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!