本次共计算 6 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/6】求函数sin(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( cos(x)\right)}{dx}\\=&-sin(x)\\=&-sin(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -sin(x)\right)}{dx}\\=&-cos(x)\\=&-cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/6】求函数cos(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cos(x)\right)}{dx}\\=&-sin(x)\\=&-sin(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -sin(x)\right)}{dx}\\=&-cos(x)\\=&-cos(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【3/6】求函数tan(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan(x)\right)}{dx}\\=&sec^{2}(x)(1)\\=&sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)tan(x)\\=&2tan(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2tan(x)sec^{2}(x)\right)}{dx}\\=&2sec^{2}(x)(1)sec^{2}(x) + 2tan(x)*2sec^{2}(x)tan(x)\\=&2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 2sec^{4}(x) + 4tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&2*4sec^{4}(x)tan(x) + 4*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4tan^{2}(x)*2sec^{2}(x)tan(x)\\=&16tan(x)sec^{4}(x) + 8tan^{3}(x)sec^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【4/6】求函数cot(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cot(x)\right)}{dx}\\=&-csc^{2}(x)\\=&-csc^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -csc^{2}(x)\right)}{dx}\\=&--2csc^{2}(x)cot(x)\\=&2cot(x)csc^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2cot(x)csc^{2}(x)\right)}{dx}\\=&2*-csc^{2}(x)csc^{2}(x) + 2cot(x)*-2csc^{2}(x)cot(x)\\=&-2csc^{4}(x) - 4cot^{2}(x)csc^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -2csc^{4}(x) - 4cot^{2}(x)csc^{2}(x)\right)}{dx}\\=&-2*-4csc^{4}(x)cot(x) - 4*-2cot(x)csc^{2}(x)csc^{2}(x) - 4cot^{2}(x)*-2csc^{2}(x)cot(x)\\=&16cot(x)csc^{4}(x) + 8cot^{3}(x)csc^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【5/6】求函数sec(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sec(x)\right)}{dx}\\=&sec(x)tan(x)\\=&tan(x)sec(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( tan(x)sec(x)\right)}{dx}\\=&sec^{2}(x)(1)sec(x) + tan(x)sec(x)tan(x)\\=&sec^{3}(x) + tan^{2}(x)sec(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( sec^{3}(x) + tan^{2}(x)sec(x)\right)}{dx}\\=&3sec^{3}(x)tan(x) + 2tan(x)sec^{2}(x)(1)sec(x) + tan^{2}(x)sec(x)tan(x)\\=&5tan(x)sec^{3}(x) + tan^{3}(x)sec(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 5tan(x)sec^{3}(x) + tan^{3}(x)sec(x)\right)}{dx}\\=&5sec^{2}(x)(1)sec^{3}(x) + 5tan(x)*3sec^{3}(x)tan(x) + 3tan^{2}(x)sec^{2}(x)(1)sec(x) + tan^{3}(x)sec(x)tan(x)\\=&5sec^{5}(x) + 18tan^{2}(x)sec^{3}(x) + tan^{4}(x)sec(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【6/6】求函数csc(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( csc(x)\right)}{dx}\\=&-csc(x)cot(x)\\=&-cot(x)csc(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -cot(x)csc(x)\right)}{dx}\\=&--csc^{2}(x)csc(x) - cot(x)*-csc(x)cot(x)\\=&csc^{3}(x) + cot^{2}(x)csc(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( csc^{3}(x) + cot^{2}(x)csc(x)\right)}{dx}\\=&-3csc^{3}(x)cot(x) + -2cot(x)csc^{2}(x)csc(x) + cot^{2}(x)*-csc(x)cot(x)\\=& - 5cot(x)csc^{3}(x) - cot^{3}(x)csc(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - 5cot(x)csc^{3}(x) - cot^{3}(x)csc(x)\right)}{dx}\\=& - 5*-csc^{2}(x)csc^{3}(x) - 5cot(x)*-3csc^{3}(x)cot(x) - -3cot^{2}(x)csc^{2}(x)csc(x) - cot^{3}(x)*-csc(x)cot(x)\\=&5csc^{5}(x) + 18cot^{2}(x)csc^{3}(x) + cot^{4}(x)csc(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!