本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xe^{1 - cos(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xe^{-cos(x) + 1}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xe^{-cos(x) + 1}\right)}{dx}\\=&e^{-cos(x) + 1} + xe^{-cos(x) + 1}(--sin(x) + 0)\\=&e^{-cos(x) + 1} + xe^{-cos(x) + 1}sin(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( e^{-cos(x) + 1} + xe^{-cos(x) + 1}sin(x)\right)}{dx}\\=&e^{-cos(x) + 1}(--sin(x) + 0) + e^{-cos(x) + 1}sin(x) + xe^{-cos(x) + 1}(--sin(x) + 0)sin(x) + xe^{-cos(x) + 1}cos(x)\\=&2e^{-cos(x) + 1}sin(x) + xe^{-cos(x) + 1}sin^{2}(x) + xe^{-cos(x) + 1}cos(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2e^{-cos(x) + 1}sin(x) + xe^{-cos(x) + 1}sin^{2}(x) + xe^{-cos(x) + 1}cos(x)\right)}{dx}\\=&2e^{-cos(x) + 1}(--sin(x) + 0)sin(x) + 2e^{-cos(x) + 1}cos(x) + e^{-cos(x) + 1}sin^{2}(x) + xe^{-cos(x) + 1}(--sin(x) + 0)sin^{2}(x) + xe^{-cos(x) + 1}*2sin(x)cos(x) + e^{-cos(x) + 1}cos(x) + xe^{-cos(x) + 1}(--sin(x) + 0)cos(x) + xe^{-cos(x) + 1}*-sin(x)\\=&3e^{-cos(x) + 1}sin^{2}(x) + 3e^{-cos(x) + 1}cos(x) + 3xe^{-cos(x) + 1}sin(x)cos(x) + xe^{-cos(x) + 1}sin^{3}(x) - xe^{-cos(x) + 1}sin(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 3e^{-cos(x) + 1}sin^{2}(x) + 3e^{-cos(x) + 1}cos(x) + 3xe^{-cos(x) + 1}sin(x)cos(x) + xe^{-cos(x) + 1}sin^{3}(x) - xe^{-cos(x) + 1}sin(x)\right)}{dx}\\=&3e^{-cos(x) + 1}(--sin(x) + 0)sin^{2}(x) + 3e^{-cos(x) + 1}*2sin(x)cos(x) + 3e^{-cos(x) + 1}(--sin(x) + 0)cos(x) + 3e^{-cos(x) + 1}*-sin(x) + 3e^{-cos(x) + 1}sin(x)cos(x) + 3xe^{-cos(x) + 1}(--sin(x) + 0)sin(x)cos(x) + 3xe^{-cos(x) + 1}cos(x)cos(x) + 3xe^{-cos(x) + 1}sin(x)*-sin(x) + e^{-cos(x) + 1}sin^{3}(x) + xe^{-cos(x) + 1}(--sin(x) + 0)sin^{3}(x) + xe^{-cos(x) + 1}*3sin^{2}(x)cos(x) - e^{-cos(x) + 1}sin(x) - xe^{-cos(x) + 1}(--sin(x) + 0)sin(x) - xe^{-cos(x) + 1}cos(x)\\=&12e^{-cos(x) + 1}sin(x)cos(x) + 4e^{-cos(x) + 1}sin^{3}(x) - 4e^{-cos(x) + 1}sin(x) + 6xe^{-cos(x) + 1}sin^{2}(x)cos(x) + 3xe^{-cos(x) + 1}cos^{2}(x) - 4xe^{-cos(x) + 1}sin^{2}(x) + xe^{-cos(x) + 1}sin^{4}(x) - xe^{-cos(x) + 1}cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!