数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数e^{{(x - 1)}^{2}{(x + 1)}^{3}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\right)}{dx}\\=&e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0)\\=&5x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 4x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 6x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 4xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 5x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 4x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 6x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 4xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\right)}{dx}\\=&5*4x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 5x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 4*3x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 4x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 6*2xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 6x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 4e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 4xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0)\\=&76x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 25x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 40x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 44x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 88x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 14x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 16x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 20xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 3e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 76x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 25x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 40x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 44x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 88x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 14x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 16x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 20xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 3e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\right)}{dx}\\=&76*3x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 76x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 25*8x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 25x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 40*7x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 40x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 44*6x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 44x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 88*5x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 88x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 14*4x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 14x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 16*2xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 16x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 20e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 20xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 3e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0)\\=&342x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 1380x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 888x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 900x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 921x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 176x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 125x^{12}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 300x^{11}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 210x^{10}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 956x^{9}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 153x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 24xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 23e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 342x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 1380x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 888x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 900x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 921x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 176x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 125x^{12}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 300x^{11}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 210x^{10}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 956x^{9}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 153x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 24xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 23e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\right)}{dx}\\=&342*2xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 342x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 1380*7x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 1380x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 888*6x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 888x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 900*5x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 900x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 921*4x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 921x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 176*3x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 176x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 125*12x^{11}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 125x^{12}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 300*11x^{10}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 300x^{11}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 210*10x^{9}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 210x^{10}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 956*9x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 956x^{9}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 153*8x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 153x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) + 24e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 24xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0) - 23e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}(5x^{4} + 4x^{3} - 2*3x^{2} - 2*2x + 1 + 0)\\=&800xe^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 22088x^{6}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 8544x^{5}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 8196x^{4}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 5112x^{3}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 912x^{2}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 14664x^{11}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 17792x^{10}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 11672x^{9}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 27810x^{8}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 800x^{7}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 625x^{16}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + 2000x^{15}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 600x^{14}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 7920x^{13}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} - 4404x^{12}e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1} + e^{x^{5} + x^{4} - 2x^{3} - 2x^{2} + x + 1}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。