数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数tan(\frac{ln(x)}{x}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan(\frac{ln(x)}{x})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan(\frac{ln(x)}{x})\right)}{dx}\\=&sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})\\=&\frac{-ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{2}} + \frac{sec^{2}(\frac{ln(x)}{x})}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{2}} + \frac{sec^{2}(\frac{ln(x)}{x})}{x^{2}}\right)}{dx}\\=&\frac{--2ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{3}} - \frac{sec^{2}(\frac{ln(x)}{x})}{x^{2}(x)} - \frac{ln(x)*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{2}} + \frac{-2sec^{2}(\frac{ln(x)}{x})}{x^{3}} + \frac{2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{2}}\\=&\frac{2ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{3}} - \frac{3sec^{2}(\frac{ln(x)}{x})}{x^{3}} + \frac{2ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}} - \frac{4ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{2tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{3}} - \frac{3sec^{2}(\frac{ln(x)}{x})}{x^{3}} + \frac{2ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}} - \frac{4ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{2tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}}\right)}{dx}\\=&\frac{2*-3ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{2sec^{2}(\frac{ln(x)}{x})}{x^{3}(x)} + \frac{2ln(x)*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{3}} - \frac{3*-3sec^{2}(\frac{ln(x)}{x})}{x^{4}} - \frac{3*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{3}} + \frac{2*-4ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{2*2ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}(x)} + \frac{2ln^{2}(x)sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{2ln^{2}(x)tan(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{4}} - \frac{4*-4ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{4tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{4}(x)} - \frac{4ln(x)sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{4}} - \frac{4ln(x)tan(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{4}} + \frac{2*-4tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{2sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{2tan(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{4}}\\=&\frac{-6ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{11sec^{2}(\frac{ln(x)}{x})}{x^{4}} - \frac{12ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{30ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{18tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{2ln^{3}(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}} + \frac{6ln^{2}(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}} - \frac{4ln^{3}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{12ln^{2}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{6ln(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}} - \frac{12ln(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{2sec^{4}(\frac{ln(x)}{x})}{x^{6}} + \frac{4tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{4}} + \frac{11sec^{2}(\frac{ln(x)}{x})}{x^{4}} - \frac{12ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{30ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{18tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{2ln^{3}(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}} + \frac{6ln^{2}(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}} - \frac{4ln^{3}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{12ln^{2}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{6ln(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}} - \frac{12ln(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{2sec^{4}(\frac{ln(x)}{x})}{x^{6}} + \frac{4tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}}\right)}{dx}\\=&\frac{-6*-4ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{6sec^{2}(\frac{ln(x)}{x})}{x^{4}(x)} - \frac{6ln(x)*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{4}} + \frac{11*-4sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{11*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{4}} - \frac{12*-5ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{12*2ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}(x)} - \frac{12ln^{2}(x)sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{12ln^{2}(x)tan(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{5}} + \frac{30*-5ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{30tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{5}(x)} + \frac{30ln(x)sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{30ln(x)tan(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{5}} - \frac{18*-5tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{18sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{18tan(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{5}} - \frac{2*-6ln^{3}(x)sec^{4}(\frac{ln(x)}{x})}{x^{7}} - \frac{2*3ln^{2}(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}(x)} - \frac{2ln^{3}(x)*4sec^{4}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} + \frac{6*-6ln^{2}(x)sec^{4}(\frac{ln(x)}{x})}{x^{7}} + \frac{6*2ln(x)sec^{4}(\frac{ln(x)}{x})}{x^{6}(x)} + \frac{6ln^{2}(x)*4sec^{4}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} - \frac{4*-6ln^{3}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} - \frac{4*3ln^{2}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}(x)} - \frac{4ln^{3}(x)*2tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{4ln^{3}(x)tan^{2}(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} + \frac{12*-6ln^{2}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} + \frac{12*2ln(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}(x)} + \frac{12ln^{2}(x)*2tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{12ln^{2}(x)tan^{2}(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} - \frac{6*-6ln(x)sec^{4}(\frac{ln(x)}{x})}{x^{7}} - \frac{6sec^{4}(\frac{ln(x)}{x})}{x^{6}(x)} - \frac{6ln(x)*4sec^{4}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} - \frac{12*-6ln(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} - \frac{12tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}(x)} - \frac{12ln(x)*2tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{12ln(x)tan^{2}(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} + \frac{2*-6sec^{4}(\frac{ln(x)}{x})}{x^{7}} + \frac{2*4sec^{4}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}} + \frac{4*-6tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} + \frac{4*2tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{4tan^{2}(\frac{ln(x)}{x})*2sec^{2}(\frac{ln(x)}{x})tan(\frac{ln(x)}{x})(\frac{-ln(x)}{x^{2}} + \frac{1}{x(x)})}{x^{6}}\\=&\frac{24ln(x)sec^{2}(\frac{ln(x)}{x})}{x^{5}} - \frac{50sec^{2}(\frac{ln(x)}{x})}{x^{5}} + \frac{16ln^{4}(x)tan(\frac{ln(x)}{x})sec^{4}(\frac{ln(x)}{x})}{x^{8}} - \frac{64ln^{3}(x)tan(\frac{ln(x)}{x})sec^{4}(\frac{ln(x)}{x})}{x^{8}} - \frac{64ln(x)tan(\frac{ln(x)}{x})sec^{4}(\frac{ln(x)}{x})}{x^{8}} + \frac{16tan(\frac{ln(x)}{x})sec^{4}(\frac{ln(x)}{x})}{x^{8}} + \frac{72ln^{2}(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} - \frac{208ln(x)tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{24ln^{3}(x)sec^{4}(\frac{ln(x)}{x})}{x^{7}} - \frac{84ln^{2}(x)sec^{4}(\frac{ln(x)}{x})}{x^{7}} + \frac{48ln^{3}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} - \frac{168ln^{2}(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} + \frac{142tan(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{6}} + \frac{96ln(x)sec^{4}(\frac{ln(x)}{x})}{x^{7}} + \frac{192ln(x)tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} - \frac{36sec^{4}(\frac{ln(x)}{x})}{x^{7}} - \frac{72tan^{2}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{7}} + \frac{96ln^{2}(x)tan(\frac{ln(x)}{x})sec^{4}(\frac{ln(x)}{x})}{x^{8}} + \frac{8ln^{4}(x)tan^{3}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{8}} - \frac{32ln^{3}(x)tan^{3}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{8}} + \frac{48ln^{2}(x)tan^{3}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{8}} - \frac{32ln(x)tan^{3}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{8}} + \frac{8tan^{3}(\frac{ln(x)}{x})sec^{2}(\frac{ln(x)}{x})}{x^{8}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。