本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(3 - 3{({x}^{2} + 2)}^{2})}{(1 + {({x}^{2} + 2)}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{3x^{4}}{(x^{4} + 4x^{2} + 5)} - \frac{12x^{2}}{(x^{4} + 4x^{2} + 5)} - \frac{9}{(x^{4} + 4x^{2} + 5)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{3x^{4}}{(x^{4} + 4x^{2} + 5)} - \frac{12x^{2}}{(x^{4} + 4x^{2} + 5)} - \frac{9}{(x^{4} + 4x^{2} + 5)}\right)}{dx}\\=& - 3(\frac{-(4x^{3} + 4*2x + 0)}{(x^{4} + 4x^{2} + 5)^{2}})x^{4} - \frac{3*4x^{3}}{(x^{4} + 4x^{2} + 5)} - 12(\frac{-(4x^{3} + 4*2x + 0)}{(x^{4} + 4x^{2} + 5)^{2}})x^{2} - \frac{12*2x}{(x^{4} + 4x^{2} + 5)} - 9(\frac{-(4x^{3} + 4*2x + 0)}{(x^{4} + 4x^{2} + 5)^{2}})\\=&\frac{12x^{7}}{(x^{4} + 4x^{2} + 5)^{2}} + \frac{72x^{5}}{(x^{4} + 4x^{2} + 5)^{2}} - \frac{12x^{3}}{(x^{4} + 4x^{2} + 5)} + \frac{132x^{3}}{(x^{4} + 4x^{2} + 5)^{2}} - \frac{24x}{(x^{4} + 4x^{2} + 5)} + \frac{72x}{(x^{4} + 4x^{2} + 5)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!