数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数arcsin(log_{5}^{x}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(log_{5}^{x})\right)}{dx}\\=&(\frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}))}{((1 - (log_{5}^{x})^{2})^{\frac{1}{2}})})\\=&\frac{1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}xln(5)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}xln(5)}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}})}{xln(5)} + \frac{-1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{2}ln(5)} + \frac{-0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}xln^{2}(5)(5)}\\=&\frac{log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{2}ln^{2}(5)} - \frac{1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{2}ln(5)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{2}ln^{2}(5)} - \frac{1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{2}ln(5)}\right)}{dx}\\=&\frac{(\frac{\frac{-3}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}})log_{5}^{x}}{x^{2}ln^{2}(5)} + \frac{-2log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{2}(5)} + \frac{(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))})}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{2}ln^{2}(5)} + \frac{log_{5}^{x}*-2*0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{2}ln^{3}(5)(5)} - \frac{(\frac{\frac{-1}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}})}{x^{2}ln(5)} - \frac{-2}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{3}ln(5)} - \frac{-0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{2}ln^{2}(5)(5)}\\=&\frac{3{\left(log_{5}^{x}\right)}^{2}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{3}ln^{3}(5)} - \frac{3log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{2}(5)} + \frac{1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{3}(5)} + \frac{2}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{3}ln(5)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3{\left(log_{5}^{x}\right)}^{2}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{3}ln^{3}(5)} - \frac{3log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{2}(5)} + \frac{1}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{3}(5)} + \frac{2}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{3}ln(5)}\right)}{dx}\\=&\frac{3(\frac{\frac{-5}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{7}{2}}}){\left(log_{5}^{x}\right)}^{2}}{x^{3}ln^{3}(5)} + \frac{3*-3{\left(log_{5}^{x}\right)}^{2}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{4}ln^{3}(5)} + \frac{3(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))})}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{3}ln^{3}(5)} + \frac{3{\left(log_{5}^{x}\right)}^{2}*-3*0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{3}ln^{4}(5)(5)} - \frac{3(\frac{\frac{-3}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}})log_{5}^{x}}{x^{3}ln^{2}(5)} - \frac{3*-3log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{4}ln^{2}(5)} - \frac{3(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))})}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{2}(5)} - \frac{3log_{5}^{x}*-2*0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{3}(5)(5)} + \frac{(\frac{\frac{-3}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}})}{x^{3}ln^{3}(5)} + \frac{-3}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{4}ln^{3}(5)} + \frac{-3*0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{3}ln^{4}(5)(5)} + \frac{2(\frac{\frac{-1}{2}(-(\frac{2log_{5}^{x}(\frac{(1)}{(x)} - \frac{(0)log_{5}^{x}}{(5)})}{(ln(5))}) + 0)}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}})}{x^{3}ln(5)} + \frac{2*-3}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{4}ln(5)} + \frac{2*-0}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{3}ln^{2}(5)(5)}\\=&\frac{15{\left(log_{5}^{x}\right)}^{3}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{7}{2}}x^{4}ln^{4}(5)} - \frac{18{\left(log_{5}^{x}\right)}^{2}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{4}ln^{3}(5)} + \frac{9log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{5}{2}}x^{4}ln^{4}(5)} + \frac{11log_{5}^{x}}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{4}ln^{2}(5)} - \frac{6}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{3}{2}}x^{4}ln^{3}(5)} - \frac{6}{(-{\left(log_{5}^{x}\right)}^{2} + 1)^{\frac{1}{2}}x^{4}ln(5)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。