| - | 2667 100 | ( | 2 | × | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 3 | ) | + | 2667 100 | ( | 40 | x | + | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 4 | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) | = | 0 |
| 方程左边 = | - | 2667 100 | × | 2 | × | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | − | 2667 100 | × | 3 | + | 2667 100 | ( | 40 | x | + | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 4 | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 |
| = | - | 7112 5 | ( | 1 | − | x | ) | − | 8001 100 | + | 2667 100 | ( | 40 | x | + | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 4 | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 |
| = | - | 7112 5 | × | 1 | + | 7112 5 | x | − | 8001 100 | + | 2667 100 | ( | 40 | x | + | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 4 | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 |
| = | - | 7112 5 | + | 7112 5 | x | − | 8001 100 | + | 2667 100 | ( | 40 | x | + | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 4 | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 150241 100 | + | 7112 5 | x | + | 2667 100 | ( | 40 | x | + | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 4 | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 |
| = | - | 150241 100 | + | 7112 5 | x | + | 2667 100 | × | 40 | x | + | 2667 100 | × | 40 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 2667 100 | × | 4 |
| = | - | 150241 100 | + | 7112 5 | x | + | 5334 5 | x | + | 1778 5 | ( | 1 | − | x | ) | + | 2667 25 | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 139573 100 | + | 12446 5 | x | + | 1778 5 | ( | 1 | − | x | ) | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 |
| = | - | 139573 100 | + | 12446 5 | x | + | 1778 5 | × | 1 | − | 1778 5 | x | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 |
| = | - | 139573 100 | + | 12446 5 | x | + | 1778 5 | − | 1778 5 | x | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 104013 100 | + | 10668 5 | x | + | 20 | ( | 30 | x | + | 10 | ( | 1 | − | x | ) | + | 2 | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 104013 100 | + | 10668 5 | x | + | 20 | × | 30 | x | + | 20 | × | 10 | ( | 1 | − | x | ) | + | 20 | × | 2 | − | 20 |
| = | - | 104013 100 | + | 10668 5 | x | + | 600 | x | + | 200 | ( | 1 | − | x | ) | + | 40 | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 100013 100 | + | 13668 5 | x | + | 200 | ( | 1 | − | x | ) | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 100013 100 | + | 13668 5 | x | + | 200 | × | 1 | − | 200 | x | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 |
| = | - | 100013 100 | + | 13668 5 | x | + | 200 | − | 200 | x | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 80013 100 | + | 12668 5 | x | − | 20 | ( | 60 | ( | 1 | − | x | ) | + | 1 | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 80013 100 | + | 12668 5 | x | − | 20 | × | 60 | ( | 1 | − | x | ) | − | 20 | × | 1 | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 80013 100 | + | 12668 5 | x | − | 1200 | ( | 1 | − | x | ) | − | 20 | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 82013 100 | + | 12668 5 | x | − | 1200 | ( | 1 | − | x | ) | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 82013 100 | + | 12668 5 | x | − | 1200 | × | 1 | + | 1200 | x | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 82013 100 | + | 12668 5 | x | − | 1200 | + | 1200 | x | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 202013 100 | + | 18668 5 | x | + | 2667 100 | ( | 80 | x | + | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 1 | ) | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |
| = | - | 202013 100 | + | 18668 5 | x | + | 2667 100 | × | 80 | x | + | 2667 100 | × | 80 | ÷ | 3 | × | ( | 1 | − | x | ) | + | 2667 100 | × | 1 |
| = | - | 202013 100 | + | 18668 5 | x | + | 10668 5 | x | + | 3556 5 | ( | 1 | − | x | ) | + | 2667 100 | + | 20 | ( | 60 | x | + | 20 | ( | 1 | − | x | ) | + | 1 | ) |